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• Speech recognition is a type of pattern recognition problem
• Q: Should the pattern matching be performed on the audio sample streams 

directly?  If not, what?
• A: Raw sample streams are not well suited for matching
• A visual analogy: recognizing a letter inside a box

– The input happens to be pixel-wise inverse of the template

• But blind, pixel-wise comparison (i.e. on the raw data) shows maximum dis-
similarity

First Step: Feature Extraction

A A
template input
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• Needed: identification of salient features in the images
• E.g. edges, connected lines, shapes

– These are commonly used features in image analysis
• An edge detection algorithm generates the following for both 

images and now we get a perfect match

• Our brain does this kind of image analysis automatically and we 
can instantly identify the input letter as being the same as the 
template

Feature Extraction (contd.)
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• Figures below show energy at various frequencies in a 
signal as a function of time
– Called a spectrogram

• Different instances of a sound will have the same 
generic spectral structure

• Features must capture this spectral structure

Sound Characteristics are in Frequency Patterns

AA IY UW M
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Computing “Features”
• Features must be computed that capture the spectral characteristics 

of the signal
• Important to capture only the salient spectral characteristics of the 

sounds
– Without capturing speaker-specific or other incidental structure

• The most commonly used feature is the Mel-frequency cepstrum
– Compute the spectrogram of the signal
– Derive a set of numbers that capture only the salient apsects of this 

spectrogram
– Salient aspects computed to follow the manner in which humans perceive 

sounds

• What follows: A quick intro to signal processing
– All necessary aspects
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Capturing the Spectrum: The discrete Fourier 
transform

• Transform analysis: Decompose a sequence of numbers into a 
weighted sum of other time series:

s[n] = A.s0[n] + B.s1[n] + C.s2[n] + …

• The component time series must be defined
– For the Fourier Transform, these are complex exponentials

• The analysis determines the weights of the component time 
series
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The complex exponential
• The complex exponential is a complex sum of two sinusoids

• ejθ = cosθ + j sinθ
• The real part is a cosine function 
• The imaginary part is a sine function

• A complex exponential time series is a complex sum of two time series
• ejωt = cos(ωt) + j sin(ωt)

• Two complex exponentials of different frequencies are “orthogonal” to each 
other. i.e.
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• The discrete Fourier transform decomposes the signal into 
the sum of a finite number of complex exponentials
– As many exponentials as there are samples in the signal being 

analyzed

• An aperiodic signal cannot be decomposed into a sum of a 
finite number of complex exponentials
– Or into a sum of any countable set of periodic signals

• The discrete Fourier transform actually assumes that the 
signal being analyzed is exactly one period of an infinitely 
long signal
– In reality, it computes the Fourier spectrum of the infinitely long 

periodic signal, of which the analyzed data are one period

The Discrete Fourier Transform
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• The discrete Fourier transform of the above signal actually computes 
the Fourier spectrum of the periodic signal shown below
– Which extends from –infinity to +infinity
– The period of this signal is 31 samples in this example

The Discrete Fourier Transform
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• The kth point of a Fourier transform is computed as:

– x[n] is the nth point in the analyzed data sequence
– X[k] is the value of the kth point in its Fourier spectrum
– M is the total number of points in the sequence

• Note that the (M+k)th Fourier coefficient is identical to the 
kth Fourier coefficient
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• A discrete Fourier transform of an M-point sequence will only 
compute M unique frequency components
– i.e. the DFT of an M point sequence will have M points
– The M-point DFT represents frequencies in the continuous-time signal that 

was digitized to obtain the digital signal

• The 0th point in the DFT represents 0Hz, or the DC component of 
the signal

• The (M-1)th point in the DFT represents (M-1)/M times the sampling 
frequency
– The Mth point represents the sampling frequency, which cannot be 

distinguished from DC

• All DFT points are uniformly spaced on the frequency axis between 
0 and the sampling frequency

The Discrete Fourier Transform
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• Discrete Fourier transform coefficients are generally complex
– ejθ has a real part cosθ and an imaginary part sinθ

ejθ = cosθ + j sinθ
– As a result, every X[k] has the form

X[k] = Xreal[k] + jXimaginary[k]
• A magnitude spectrum represents only the magnitude of the 

Fourier coefficients
Xmagnitude[k] = sqrt(Xreal[k]2 + Ximag[k]2)

• A power spectrum is the square of the magnitude spectrum
Xpower[k] = Xreal[k]2 + Ximag[k]2

• For speech recognition, we usually use the magnitude or power 
spectra

The Discrete Fourier Transform
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• A 50 point segment of a decaying sine wave sampled at 8000 Hz

The corresponding 50 point magnitude DFT. The 51st point (shown in red) is 
identical to the 1st point.

Sample 0 = 0 Hz Sample 50 = 8000Hz
Sample 50 is the 51st point
It is identical to Sample 0

The Discrete Fourier Transform
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• The Fast Fourier Transform (FFT) is simply a fast 
algorithm to compute the DFT
– It utilizes symmetry in the DFT computation to reduce 

the total number of arithmetic operations greatly

• The time domain signal can be recovered from its 
DFT as:
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• The DFT of one period of the sinusoid shown in the figure computes the 
Fourier series of the entire sinusoid from –infinity to +infinity

The DFT of a real sinusoid has only one non zero frequency
– The second peak in the figure also represents the same frequency as an effect of 

aliasing

Windowing
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• The DFT of one period of the sinusoid shown in the figure computes the 
Fourier series of the entire sinusoid from –infinity to +infinity

• The DFT of a real sinusoid has only one non zero frequency
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aliasing
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• The DFT of one period of the sinusoid shown in the figure computes the 
Fourier series of the entire sinusoid from –infinity to +infinity

• The DFT of a real sinusoid has only one non zero frequency
– The second peak in the figure also represents the same frequency as an effect of 

aliasing

Magnitude spectrum

Windowing
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• The DFT of any sequence computes the Fourier series for an infinite repetition 
of that sequence

• The DFT of a partial segment of a sinusoid computes the Fourier series of an 
inifinite repetition of that segment, and not of the entire sinusoid

• This will not give us the DFT of the sinusoid itself!

Windowing

2011756/18799D



• The DFT of any sequence computes the Fourier series for an infinite repetition 
of that sequence

• The DFT of a partial segment of a sinusoid computes the Fourier series of an 
inifinite repetition of that segment, and not of the entire sinusoid

• This will not give us the DFT of the sinusoid itself!

Windowing

2111756/18799D



11756/18799D

• The DFT of any sequence computes the Fourier series for an infinite repetition 
of that sequence

• The DFT of a partial segment of a sinusoid computes the Fourier series of an 
infinite repetition of that segment, and not of the entire sinusoid

• This will not give us the DFT of the sinusoid itself!

Windowing

Magnitude spectrum
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Windowing

Magnitude spectrum of segment

Magnitude spectrum of complete sine wave
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• The difference occurs due to two reasons:
• The transform cannot know what the signal actually looks like 

outside the observed window 
– We must infer what happens outside the observed window from what 

happens inside
• The implicit repetition of the observed signal introduces large 

discontinuities at the points of repetition
– This distorts even our measurement of what happens at the boundaries of 

what has been reliably observed

Windowing
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• The difference occurs due to two reasons:
• The transform cannot know what the signal actually looks like 

outside the observed window 
– We must infer what happens outside the observed window from what 

happens inside
• The implicit repetition of the observed signal introduces large 

discontinuities at the points of repetition
– This distorts even our measurement of what happens at the boundaries of 

what has been reliably observed
– The actual signal (whatever it is) is unlikely to have such discontinuities

Windowing
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Windowing

• While we can never know what the signal looks like outside the 
window, we can try to minimize the discontinuities at the 
boundaries

• We do this by multiplying the signal with a window function
– We call this procedure windowing
– We refer to the resulting signal as a “windowed” signal

• Windowing attempts to do the following:
– Keep the windowed signal similar to the original in the central regions
– Reduce or eliminate the discontinuities in the implicit periodic signal
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Windowing

• While we can never know what the signal looks like outside the 
window, we can try to minimize the discontinuities at the 
boundaries

• We do this by multiplying the signal with a window function
– We call this procedure windowing
– We refer to the resulting signal as a “windowed” signal

• Windowing attempts to do the following:
– Keep the windowed signal similar to the original in the central regions
– Reduce or eliminate the discontinuities in the implicit periodic signal
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Windowing

• The DFT of the windowed signal does not have any artifacts introduced by 
discontinuities in the signal

• Often it is also a more faithful reproduction of the DFT of the complete signal 
whose segment we have analyzed

Magnitude spectrum
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Windowing

Magnitude spectrum of windowed signal

Magnitude spectrum of complete sine wave

Magnitude spectrum of original segment
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Windowing

• Windowing is not a perfect solution
– The original (unwindowed) segment is identical to the original (complete) signal 

within the segment
– The windowed segment is often not identical to the complete signal anywhere

• Several windowing functions have been proposed that strike different 
tradeoffs between the fidelity in the central regions and the smoothing at the 
boundaries 3111756/18799D



Cosine windows:
– Window length is M
– Index begins at 0

Hamming: w[n] = 0.54 – 0.46 cos(2πn/M)
Hanning: w[n] = 0.5 – 0.5 cos(2πn/M)
Blackman: 0.42 – 0.5 cos(2πn/M) + 0.08 cos(4πn/M)

Windowing
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Geometric windows:

– Rectangular (boxcar):

– Triangular (Bartlett):

– Trapezoid:

Windowing
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Zero Padding

• We can pad zeros to the end of a signal to make it a desired 
length
– Useful if the FFT (or any other algorithm we use) requires signals of a 

specified length
– E.g. Radix 2 FFTs require signals of length 2n i.e., some power of 2. 

We must zero pad the signal to increase its length to the appropriate 
number

• The consequence of zero padding is to change the periodic 
signal whose Fourier spectrum is being computed by the DFT
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• We can pad zeros to the end of a signal to make it a desired 
length
– Useful if the FFT (or any other algorithm we use) requires signals of a 

specified length
– E.g. Radix 2 FFTs require signals of length 2n i.e., some power of 2. 

We must zero pad the signal to increase its length to the appropriate 
number

• The consequence of zero padding is to change the periodic 
signal whose Fourier spectrum is being computed by the DFT

Zero Padding
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• The DFT of the zero padded signal is essentially the same as the DFT 
of the unpadded signal, with additional spectral samples inserted in 
between
– It does not contain any additional information over the original DFT
– It also does not contain less information

Zero Padding

Magnitude spectrum

3611756/18799D



Magnitude spectra
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• Zero padding windowed signals results in signals 
that appear to be less discontinuous at the edges
– This is only illusory
– Again, we do not introduce any new information into 

the signal by merely padding it with zeros

Zero Padding
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Zero Padding

• The DFT of the zero padded signal is essentially the same as the DFT 
of the unpadded signal, with additional spectral samples inserted in 
between
– It does not contain any additional information over the original DFT
– It also does not contain less information
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Magnitude spectra
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8000Hz

8000Hz

time

frequency

frequency

128 samples from a speech signal sampled at 16000 Hz

The first 65 points of a 128 point DFT. Plot shows log of the magnitude spectrum

The first 513 points of a 1024 point DFT. Plot shows log of the magnitude spectrum

Zero padding a speech signal
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Preemphasizing a speech signal

• The spectrum of the speech 
signal naturally has lower 
energy at higher frequencies

• This can be observed as a 
downward trend on a plot of 
the logarithm of the magnitude 
spectrum of the signal

• For many applications this can 
be undesirable
– E.g. Linear predictive modeling 

of the spectrum

Log(average(magnitude spectrum))
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• This spectral tilt can be 
corrected by 
preemphasizing the signal
– spreemp[n] = s[n] – α∗s[n-1]
– Typical value of α = 0.95

• This is a form of 
differentiation that boosts 
high frequencies

• This spectrum of the 
preemphasized signal has 
more horizontal trend
– Good for linear prediction 

and other similar methods

Log(average(magnitude spectrum))

Preemphasizing a speech signal

4311756/18799D



The process of  parametrization

The signal is processed in segments. 
Segments are typically 25 ms wide.
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The process of  parametrization

The signal is processed in segments. 
Segments are typically 25 ms wide.

Adjacent segments typically overlap
by 15 ms.
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The process of  parametrization

The signal is processed in segments. 
Segments are typically 25 ms wide.

Adjacent segments typically overlap
by 15 ms.
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Each segment is typically 20 or 
25 milliseconds wide
Speech signals do not change 
significantly within this short time interval

Segments shift every 10 
milliseconds 

The process of  parametrization
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Each segment is preemphasized

The process of  parametrization

Preemphasized segment

The preemphasized segment is windowed

Preemphasized and
windowed segment
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The DFT of the segment, and from it the 
power spectrum of the segment is computed

The process of  parametrization

Preemphasized and
windowed segment

Frequency (Hz)

P
ow

er = power spectrum
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Auditory Perception
• Conventional Spectral analysis decomposes the signal into 

a number of linearly spaced frequencies
– The resolution (differences between adjacent frequencies) is the 

same at all frequencies

• The human ear, on the other hand, has non-uniform 
resolution
– At low frequencies we can detect small changes in frequency
– At high frequencies, only gross differences can be detected

• Feature computation must be performed with similar 
resolution
– Since the information in the speech signal is also distributed in a 

manner matched to human perception
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Matching Human Auditory Response

• Modify the spectrum to model the 
frequency resolution of the human ear

• Warp the frequency axis such that small 
differences between frequencies at lower 
frequencies are given the same importance 
as larger differences at higher frequencies
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Linear frequency axis: equal increments of 
frequency at equal intervals

Warping the frequency axis
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Perceptually warped 
frequency axis: unequal 
increments of frequency 
at equal intervals or 
conversely, equal 
increments of frequency 
at unequal intervals

Warping function 
(based on studies of 
human hearing)

Linear frequency axis:
Sampled at uniform 
intervals by an FFT

Warping the frequency axis
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Perceptually warped 
frequency axis: unequal 
increments of frequency 
at equal intervals or 
conversely, equal 
increments of frequency 
at unequal intervals

Warping function 
(based on studies of 
human hearing)

Linear frequency axis:
Sampled at uniform 
intervals by an FFT

Warping the frequency axis
)

700
1(log2595)( 10

ffmel +=

A standard warping 
function is the Mel 
warping function
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Power spectrum of 
each frame

The process of  parametrization
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Power spectrum of 
each frame

The process of  parametrization

is warped in 
frequency as per the 
warping function
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Power spectrum of 
each frame

The process of  parametrization

is warped in 
frequency as per the 
warping function
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Filter Bank

• Each hair cells in the human ear actually responds 
to a band of frequencies, with a peak response at a 
particular frequency

• To mimic this, we apply a bank of “auditory” 
filters
– Filters are triangular

• An approximation: hair cell response is not triangular

– A small number of filters (40)
• Far fewer than hair cells (~3000)
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Power spectrum of 
each frame

The process of  parametrization

is warped in 
frequency as per the 
warping function

Each intensity is 
weighted by the 
value of the filter at 
that frequncy. This 
picture shows a bank or 
collection of triangular filters 
that overlap by 50%
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The process of  parametrization
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The process of  parametrization

6511756/18799D



The process of  parametrization

For each filter:
Each power spectral 
value is weighted by 
the value of the filter 
at that frequency. 
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For each filter:
All weighted spectral 
values are integrated 
(added), giving one 
value for the filter

The process of  parametrization
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All weighted spectral 
values for each filter 
are integrated 
(added), giving one 
value per filter

The process of  parametrization

6811756/18799D



Additional Processing

• The Mel spectrum represents energies in 
frequency bands
– Highly unequal in different bands

• Energy and variations in energy are both much much greater at 
lower frequencies

• May dominate any pattern classification or template matching 
scores

– High-dimensional representation: many filters
• Compress the energy values to reduce imbalance
• Reduce dimensions for computational tractability

– Also, for generalization: reduced dimensional 
representations have lower variations across speakers 
for any sound
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Logarithm

All weighted spectral 
values for each filter 
are integrated 
(added), giving one 
value per filter

The process of  parametrization

Compress Values
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The process of  parametrization

Logarithm

Log Mel spectrum

All weighted spectral 
values for each filter 
are integrated 
(added), giving one 
value per filter

Compress Values
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The process of  parametrization

Another transform 
(DCT/inverse DCT)

Dim1 Dim2 Dim3 Dim4 Dim5 Dim6 Dim7  Dim8 Dim9

Logarithm

Log Mel spectrum

All weighted spectral 
values for each filter 
are integrated 
(added), giving one 
value per filter

Compress Values
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The process of  parametrization

Another transform 
(DCT/inverse DCT)

The sequence is truncated 
(typically after 13 values)

Dim1 Dim2 Dim3 Dim4 Dim5 Dim6 Dim7  Dim8 Dim9

Logarithm

Log Mel spectrum

All weighted spectral 
values for each filter 
are integrated 
(added), giving one 
value per filter

Dimensionality reduction
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The process of  parametrization

Another transform 
(DCT/inverse DCT)

Dim 1
Dim 2
Dim 3
Dim 4
Dim 5
Dim 6
…

Giving one n-dimensional 
vector for the frame

Logarithm

Log Mel spectrum

Mel Cepstrum

All weighted spectral 
values for each filter 
are integrated 
(added), giving one 
value per filter
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An example segment

400 sample segment (25 ms)
from 16khz signal preemphasized windowed

Power spectrum 40 point Mel spectrum Log Mel spectrum

Mel cepstrum
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The entire speech signal is thus converted into a sequence of 
vectors. These are cepstral vectors.
There are other ways of converting the speech signal into a 
sequence of vectors

The process of  feature extraction
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Variations to the basic theme

• Perceptual Linear Prediction (PLP) features:
– ERB filters instead of MEL filters
– Cube-root compression instead of Log
– Linear-prediction spectrum instead of Fourier 

Spectrum

• Auditory features
– Detailed and painful models of various 

components of the human ear
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Cepstral Variations from Filtering and Noise

• Microphone characteristics modify the spectral 
characteristics of the captured signal
– They change the value of the cepstra

• Noise too modifies spectral characteristics

• As do speaker variations

• All of these change the distribution of the 
cepstra
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Effect of  Speaker Variations, Microphone 
Variations, Noise etc.

• Noise, channel and speaker variations change the 
distribution of cepstral values

• To compensate for these, we would like to undo these 
changes to the distribution

• Unfortunately, the precise nature of the distributions both 
before and after the “corruption” is hard to know
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Ideal Correction for Variations

• Noise, channel and speaker variations change the 
distribution of cepstral values

• To compensate for these, we would like to undo these 
changes to the distribution

• Unfortunately, the precise nature of the distributions both 
before and after the “corruption” is hard to know
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Effect of  Noise Etc.

• Noise, channel and speaker variations change the 
distribution of cepstral values

• To compensate for these, we would like to undo these 
changes to the distribution

• Unfortunately, the precise position of the distributions of 
the “good” speech is hard to know

? ?

?
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• “Move” all utterances to have a mean of 0
• This ensures that all the data is centered at 0

– Thereby eliminating some of the mismatch

Solution: Move all distributions to a “standard” 
location

8211756/18799D



• “Move” all utterances to have a mean of 0
• This ensures that all the data is centered at 0

– Thereby eliminating some of the mismatch

Solution: Move all distributions to a “standard” 
location

8311756/18799D



• “Move” all utterances to have a mean of 0
• This ensures that all the data is centered at 0

– Thereby eliminating some of the mismatch

Solution: Move all distributions to a “standard” 
location

8411756/18799D



• “Move” all utterances to have a mean of 0
• This ensures that all the data is centered at 0

– Thereby eliminating some of the mismatch

Solution: Move all distributions to a “standard” 
location

8511756/18799D



Solution: Move all distributions to a “standard” 
location

• “Move” all utterances to have a mean of 0
• This ensures that all the data is centered at 0

– Thereby eliminating some of the mismatch
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Cepstra Mean Normalization

• For each utterance encountered (both in 
“training” and in “testing”)

• Compute the mean of all cepstral vectors

• Subtract the mean out of all cepstral vectors

»

∑=
t

recordingrecording tc
Nframes

M )(1

recordingrecordingnormalized Mtctc −= )()(
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Variance

• The variance of the distributions is also 
modified by the corrupting factors

• This can also be accounted for by variance 
normalization

These “spreads” are different
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Variance Normalization

• Compute the standard deviation of the mean-
normalized cepstra

• Divide all mean-normalized cepstra by this 
standard deviation

• The resultant cepstra for any recording have 0 
mean and a variance of 1.0 

∑=
t

normalizedrecording tc
Nframes

sd )(1 2

)(1)(var tc
sd

tc normalized
recording

normalized =
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Histogram Normalization

• Go beyond Variances: Modify the entire 
distribution

• “Histogram normalization” : make the histogram 
of every recording be identical

• For each recording, for each cepstral value
– Compute percentile points
– Find a warping function that maps these percentile 

points to the corresponding percentile points on a 0 
mean unit variance Gaussian

– Transform the cepstra according to this function
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Temporal Variations

• The cepstral vectors capture instantaneous 
information only
– Or, more precisely, current spectral structure within the 

analysis window
• Phoneme identity resides not just in the snapshot 

information, but also in the temporal structure
– Manner in which these values change with time
– Most characteristic features

• Velocity: rate of change of value with time
• Acceleration: rate with which  the velocity changes

• These must also be represented in the feature
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Velocity Features

• For every component in the cepstrum for any 
frame
– compute the difference between the corresponding 

feature value for the next frame and the value for 
the previous frame

– For 13 cepstral values, we obtain 13 “delta” values

• The set of all delta values gives us a “delta 
feature”
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C(t)

∆c(t)=c(t+τ)-c(t-τ)

The process of  feature extraction
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Representing Acceleration

• The acceleration represents the manner in which the 
velocity changes

• Represented as the derivative of velocity
• The DOUBLE-delta or Acceleration Feature captures this
• For every component in the cepstrum for any frame

– compute the difference between the corresponding delta feature 
value for the next frame and the delta value for the previous frame

– For 13 cepstral values, we obtain 13 “double-delta” values

• The set of all double-delta values gives us an “acceleration 
feature”
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C(t)

∆c(t)=c(t+τ)-c(t-τ)

∆∆c(t)=∆c(t+τ)-∆c(t-τ)

The process of  feature extraction
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Feature extraction

∆∆c(t)

∆c(t)

c(t)
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Function of  the frontend block in a 
recognizer

FrontEnd

Audio

FeatureFrame

Derives other vector sequences 
from the original sequence and 
concatenates them to increase 
the dimensionality of each vector
This is called feature computation 9711756/18799D



Other Operations
• Vocal Tract Length Normalization

– Vocal tracts of different people are different in length
– A longer vocal tract has lower resonant frequencies
– The overall spectral structure changes with the length of the vocal tract
– VTLN attempts to reduce variations due to vocal tract length

• Denoising
– Attempt to reduce the effects of noise on the featrues

• Discriminative feature projections
– Additional projection operations to enhance separation between 

features obtained from signals representing different sounds
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• ./SphinxTrain-1.0/bin.x86_64-unknown-linux-gnu/wave2feat
• [Switch]      [Default]      [Description]                                      
• -help         no             Shows the usage of the tool                        
• -example      no             Shows example of how to use the tool               
• -i Single audio input file                            
• -o                           Single cepstral output file                        
• -c                           Control file for batch processing                  
• -nskip If a control file was specified, the number of utterances to skip at the head of the file
• -runlen If a control file was specified, the number of utterances to process (see -nskip too)
• -di Input directory, input file names are relative to this, if defined
• -ei Input extension to be applied to all input files   
• -do                          Output directory, output files are relative to this
• -eo Output extension to be applied to all output files 
• -nist no             Defines input format as NIST sphere                
• -raw          no             Defines input format as raw binary data            
• -mswav no             Defines input format as Microsoft Wav (RIFF)       
• -input_endian little         Endianness of input data, big or little, ignored if NIST or MS Wav
• -nchans 1              Number of channels of data (interlaced samples assumed)
• -whichchan 1              Channel to process                                 
• -logspec no             Write out logspectral files instead of cepstra
• -feat         sphinx         SPHINX format - big endian
• -mach_endian little         Endianness of machine, big or little               
• -alpha        0.97           Preemphasis parameter                              
• -srate 16000.0        Sampling rate                                      
• -frate 100            Frame rate                                         
• -wlen 0.025625       Hamming window length                              
• -nfft 512            Size of FFT                                        
• -nfilt 40             Number of filter banks                             
• -lowerf 133.33334      Lower edge of filters                              
• -upperf 6855.4976      Upper edge of filters                              
• -ncep 13             Number of cep coefficients                         
• -doublebw no             Use double bandwidth filters (same center freq)    
• -warp_type inverse_linear Warping function type (or shape)                   
• -warp_params Parameters defining the warping function           
• -blocksize 200000         Block size, used to limit the number of samples used at a time when reading very large audio files
• -dither       yes            Add 1/2-bit noise to avoid zero energy frames      
• -seed         -1             Seed for random number generator; if less than zero, pick our own
• -verbose      no             Show input filenames 

wav2feat : sphinx feature computation tool
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• ./SphinxTrain-1.0/bin.x86_64-unknown-linux-
gnu/wave2feat
[Switch] [Default]      [Description]                                      
-help         no             Shows the usage of the tool
-example  no             Shows example of how to use the tool               

wav2feat : sphinx feature computation tool
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wav2feat : sphinx feature computation tool
./SphinxTrain-1.0/bin.x86_64-unknown-linux-gnu/wave2feat
-i Single audio input file                            
-o                         Single cepstral output file  
-nist no             Defines input format as NIST sphere                
-raw        no             Defines input format as raw binary data            
-mswav no             Defines input format as Microsoft Wav
-logspec no             Write out logspectral files instead 

of cepstra
-alpha      0.97           Preemphasis parameter                              
-srate 16000.0        Sampling rate                                      
-frate 100            Frame rate                                         
-wlen 0.025625       Hamming window length                              
-nfft 512            Size of FFT                                        
-nfilt 40             Number of filter banks                             
-lowerf 133.33334      Lower edge of filters                              
-upperf 6855.4976      Upper edge of filters                              
-ncep 13             Number of cep coefficients 
-warp_type inverse_linear Warping function type (or shape)                   
-warp_params Parameters defining the warping function 
-dither     yes            Add 1/2-bit noise to avoid zero energy 

frames 
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Format of  output File
• Four-byte integer header

– Specifies no. of floating point values to follow
– Can be used to both determine byte order and 

validity of file

• Sequence of four-byte floating-point values
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Inspecting Output
• sphinxbase-0.4.1/src/sphinx_cepview
• [NAME]          [DEFLT]         [DESCR]
• -b                   0            The beginning frame 0-based.
• -d                  10           Number of displayed coefficients.
• -describe       0            Whether description will be shown.
• -e                  2147483647      The ending frame.
• -f                                  Input feature file.
• -i                    13         Number of coefficients in the feature 

vector.
• -logfn                          Log file (default stdout/stderr)
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Project 1b
• Write a routine for computing MFCC from audio

• Record multiple instances of digits
– Zero, One, Two etc.
– 16Khz sampling, 16 bit PCM
– Compute log spectra and cepstra

• No. of features = 13 for cepstra

– Visualize both spectrographically (easy using matlab)
• Note similarity in different instances of the same word

– Modify no. of filters to 30 and 25
• Patterns will remain, but be more blurry

– Record data with noise
• Degradation due to noise may be lesser on 25-filter outputs

• Allowed to use wav2feat or code from web
– Dan Ellis has some nice code on his page
– Must be integrated with audio capture routine

• Assuming kbhit for start. Stop of recording via automatic endpointing. 104
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