
Design and Implementation of
Speech Recognition Systems

Spring 2013

Class 3: Feature Computation
30 Jan 2013

111756/18799D

• Speech recognition is a type of pattern recognition problem
• Q: Should the pattern matching be performed on the audio sample streams

directly? If not, what?
• A: Raw sample streams are not well suited for matching
• A visual analogy: recognizing a letter inside a box

– The input happens to be pixel-wise inverse of the template

• But blind, pixel-wise comparison (i.e. on the raw data) shows maximum dis-
similarity

First Step: Feature Extraction

A A
template input

211756/18799D

• Needed: identification of salient features in the images
• E.g. edges, connected lines, shapes

– These are commonly used features in image analysis
• An edge detection algorithm generates the following for both

images and now we get a perfect match

• Our brain does this kind of image analysis automatically and we
can instantly identify the input letter as being the same as the
template

Feature Extraction (contd.)

311756/18799D

• Figures below show energy at various frequencies in a
signal as a function of time
– Called a spectrogram

• Different instances of a sound will have the same
generic spectral structure

• Features must capture this spectral structure

Sound Characteristics are in Frequency Patterns

AA IY UW M

411756/18799D

Computing “Features”
• Features must be computed that capture the spectral characteristics

of the signal
• Important to capture only the salient spectral characteristics of the

sounds
– Without capturing speaker-specific or other incidental structure

• The most commonly used feature is the Mel-frequency cepstrum
– Compute the spectrogram of the signal
– Derive a set of numbers that capture only the salient apsects of this

spectrogram
– Salient aspects computed to follow the manner in which humans perceive

sounds

• What follows: A quick intro to signal processing
– All necessary aspects

511756/18799D

Capturing the Spectrum: The discrete Fourier
transform

• Transform analysis: Decompose a sequence of numbers into a
weighted sum of other time series:

s[n] = A.s0[n] + B.s1[n] + C.s2[n] + …

• The component time series must be defined
– For the Fourier Transform, these are complex exponentials

• The analysis determines the weights of the component time
series

611756/18799D

The complex exponential
• The complex exponential is a complex sum of two sinusoids

• ejθ = cosθ + j sinθ
• The real part is a cosine function
• The imaginary part is a sine function

• A complex exponential time series is a complex sum of two time series
• ejωt = cos(ωt) + j sin(ωt)

• Two complex exponentials of different frequencies are “orthogonal” to each
other. i.e.

βαβα ≠=∫
∞

∞−

 if 0dtee tjtj

711756/18799D

11756/18799D

Α x

The Discrete Fourier Transform

+

=

+Β x

C x

8

11756/18799D

+

=

+

Α x

Β x

C x

DFT

The Discrete Fourier Transform

9

• The discrete Fourier transform decomposes the signal into
the sum of a finite number of complex exponentials
– As many exponentials as there are samples in the signal being

analyzed

• An aperiodic signal cannot be decomposed into a sum of a
finite number of complex exponentials
– Or into a sum of any countable set of periodic signals

• The discrete Fourier transform actually assumes that the
signal being analyzed is exactly one period of an infinitely
long signal
– In reality, it computes the Fourier spectrum of the infinitely long

periodic signal, of which the analyzed data are one period

The Discrete Fourier Transform

1011756/18799D

• The discrete Fourier transform of the above signal actually computes
the Fourier spectrum of the periodic signal shown below
– Which extends from –infinity to +infinity
– The period of this signal is 31 samples in this example

The Discrete Fourier Transform

1111756/18799D

• The kth point of a Fourier transform is computed as:

– x[n] is the nth point in the analyzed data sequence
– X[k] is the value of the kth point in its Fourier spectrum
– M is the total number of points in the sequence

• Note that the (M+k)th Fourier coefficient is identical to the
kth Fourier coefficient

∑
−

=

−
=

1

0

2

][][
M

n

M
knj

enxkX
π

()
M

knjM

n

M
MnjM

n

M
nkMj

eenxenxkMX
πππ 21

0

21

0

2

][][][
−−

=

−−

=

+
−

∑∑ ==+

][][][
21

0

21

0

2 kXenxeenx M
knjM

n

M
knjM

n

nj ===
−−

=

−−

=

− ∑∑
ππ

π

The Discrete Fourier Transform

1211756/18799D

• A discrete Fourier transform of an M-point sequence will only
compute M unique frequency components
– i.e. the DFT of an M point sequence will have M points
– The M-point DFT represents frequencies in the continuous-time signal that

was digitized to obtain the digital signal

• The 0th point in the DFT represents 0Hz, or the DC component of
the signal

• The (M-1)th point in the DFT represents (M-1)/M times the sampling
frequency
– The Mth point represents the sampling frequency, which cannot be

distinguished from DC

• All DFT points are uniformly spaced on the frequency axis between
0 and the sampling frequency

The Discrete Fourier Transform

1311756/18799D

• Discrete Fourier transform coefficients are generally complex
– ejθ has a real part cosθ and an imaginary part sinθ

ejθ = cosθ + j sinθ
– As a result, every X[k] has the form

X[k] = Xreal[k] + jXimaginary[k]
• A magnitude spectrum represents only the magnitude of the

Fourier coefficients
Xmagnitude[k] = sqrt(Xreal[k]2 + Ximag[k]2)

• A power spectrum is the square of the magnitude spectrum
Xpower[k] = Xreal[k]2 + Ximag[k]2

• For speech recognition, we usually use the magnitude or power
spectra

The Discrete Fourier Transform

1411756/18799D

• A 50 point segment of a decaying sine wave sampled at 8000 Hz

The corresponding 50 point magnitude DFT. The 51st point (shown in red) is
identical to the 1st point.

Sample 0 = 0 Hz Sample 50 = 8000Hz
Sample 50 is the 51st point
It is identical to Sample 0

The Discrete Fourier Transform

1511756/18799D

• The Fast Fourier Transform (FFT) is simply a fast
algorithm to compute the DFT
– It utilizes symmetry in the DFT computation to reduce

the total number of arithmetic operations greatly

• The time domain signal can be recovered from its
DFT as:

∑
−

=

=
1

0

2

][1][
M

k

M
knj

ekX
M

nx
π

The Discrete Fourier Transform

1611756/18799D

• The DFT of one period of the sinusoid shown in the figure computes the
Fourier series of the entire sinusoid from –infinity to +infinity

The DFT of a real sinusoid has only one non zero frequency
– The second peak in the figure also represents the same frequency as an effect of

aliasing

Windowing

1711756/18799D

• The DFT of one period of the sinusoid shown in the figure computes the
Fourier series of the entire sinusoid from –infinity to +infinity

• The DFT of a real sinusoid has only one non zero frequency
– The second peak in the figure also represents the same frequency as an effect of

aliasing

Windowing

1811756/18799D

• The DFT of one period of the sinusoid shown in the figure computes the
Fourier series of the entire sinusoid from –infinity to +infinity

• The DFT of a real sinusoid has only one non zero frequency
– The second peak in the figure also represents the same frequency as an effect of

aliasing

Magnitude spectrum

Windowing

1911756/18799D

• The DFT of any sequence computes the Fourier series for an infinite repetition
of that sequence

• The DFT of a partial segment of a sinusoid computes the Fourier series of an
inifinite repetition of that segment, and not of the entire sinusoid

• This will not give us the DFT of the sinusoid itself!

Windowing

2011756/18799D

• The DFT of any sequence computes the Fourier series for an infinite repetition
of that sequence

• The DFT of a partial segment of a sinusoid computes the Fourier series of an
inifinite repetition of that segment, and not of the entire sinusoid

• This will not give us the DFT of the sinusoid itself!

Windowing

2111756/18799D

11756/18799D

• The DFT of any sequence computes the Fourier series for an infinite repetition
of that sequence

• The DFT of a partial segment of a sinusoid computes the Fourier series of an
infinite repetition of that segment, and not of the entire sinusoid

• This will not give us the DFT of the sinusoid itself!

Windowing

Magnitude spectrum

22

11756/18799D

Windowing

Magnitude spectrum of segment

Magnitude spectrum of complete sine wave

23

• The difference occurs due to two reasons:
• The transform cannot know what the signal actually looks like

outside the observed window
– We must infer what happens outside the observed window from what

happens inside
• The implicit repetition of the observed signal introduces large

discontinuities at the points of repetition
– This distorts even our measurement of what happens at the boundaries of

what has been reliably observed

Windowing

2411756/18799D

11756/18799D

• The difference occurs due to two reasons:
• The transform cannot know what the signal actually looks like

outside the observed window
– We must infer what happens outside the observed window from what

happens inside
• The implicit repetition of the observed signal introduces large

discontinuities at the points of repetition
– This distorts even our measurement of what happens at the boundaries of

what has been reliably observed
– The actual signal (whatever it is) is unlikely to have such discontinuities

Windowing

25

Windowing

• While we can never know what the signal looks like outside the
window, we can try to minimize the discontinuities at the
boundaries

• We do this by multiplying the signal with a window function
– We call this procedure windowing
– We refer to the resulting signal as a “windowed” signal

• Windowing attempts to do the following:
– Keep the windowed signal similar to the original in the central regions
– Reduce or eliminate the discontinuities in the implicit periodic signal

2611756/18799D

11756/18799D

Windowing

• While we can never know what the signal looks like outside the
window, we can try to minimize the discontinuities at the
boundaries

• We do this by multiplying the signal with a window function
– We call this procedure windowing
– We refer to the resulting signal as a “windowed” signal

• Windowing attempts to do the following:
– Keep the windowed signal similar to the original in the central regions
– Reduce or eliminate the discontinuities in the implicit periodic signal

27

Windowing

• While we can never know what the signal looks like outside the
window, we can try to minimize the discontinuities at the
boundaries

• We do this by multiplying the signal with a window function
– We call this procedure windowing
– We refer to the resulting signal as a “windowed” signal

• Windowing attempts to do the following:
– Keep the windowed signal similar to the original in the central regions
– Reduce or eliminate the discontinuities in the implicit periodic signal

2811756/18799D

Windowing

• The DFT of the windowed signal does not have any artifacts introduced by
discontinuities in the signal

• Often it is also a more faithful reproduction of the DFT of the complete signal
whose segment we have analyzed

Magnitude spectrum

2911756/18799D

11756/18799D

Windowing

Magnitude spectrum of windowed signal

Magnitude spectrum of complete sine wave

Magnitude spectrum of original segment

30

Windowing

• Windowing is not a perfect solution
– The original (unwindowed) segment is identical to the original (complete) signal

within the segment
– The windowed segment is often not identical to the complete signal anywhere

• Several windowing functions have been proposed that strike different
tradeoffs between the fidelity in the central regions and the smoothing at the
boundaries 3111756/18799D

Cosine windows:
– Window length is M
– Index begins at 0

Hamming: w[n] = 0.54 – 0.46 cos(2πn/M)
Hanning: w[n] = 0.5 – 0.5 cos(2πn/M)
Blackman: 0.42 – 0.5 cos(2πn/M) + 0.08 cos(4πn/M)

Windowing

3211756/18799D

Geometric windows:

– Rectangular (boxcar):

– Triangular (Bartlett):

– Trapezoid:

Windowing

3311756/18799D

11756/18799D

Zero Padding

• We can pad zeros to the end of a signal to make it a desired
length
– Useful if the FFT (or any other algorithm we use) requires signals of a

specified length
– E.g. Radix 2 FFTs require signals of length 2n i.e., some power of 2.

We must zero pad the signal to increase its length to the appropriate
number

• The consequence of zero padding is to change the periodic
signal whose Fourier spectrum is being computed by the DFT

34

• We can pad zeros to the end of a signal to make it a desired
length
– Useful if the FFT (or any other algorithm we use) requires signals of a

specified length
– E.g. Radix 2 FFTs require signals of length 2n i.e., some power of 2.

We must zero pad the signal to increase its length to the appropriate
number

• The consequence of zero padding is to change the periodic
signal whose Fourier spectrum is being computed by the DFT

Zero Padding

3511756/18799D

• The DFT of the zero padded signal is essentially the same as the DFT
of the unpadded signal, with additional spectral samples inserted in
between
– It does not contain any additional information over the original DFT
– It also does not contain less information

Zero Padding

Magnitude spectrum

3611756/18799D

Magnitude spectra

3711756/18799D

11756/18799D

• Zero padding windowed signals results in signals
that appear to be less discontinuous at the edges
– This is only illusory
– Again, we do not introduce any new information into

the signal by merely padding it with zeros

Zero Padding

38

Zero Padding

• The DFT of the zero padded signal is essentially the same as the DFT
of the unpadded signal, with additional spectral samples inserted in
between
– It does not contain any additional information over the original DFT
– It also does not contain less information

3911756/18799D

Magnitude spectra

4011756/18799D

8000Hz

8000Hz

time

frequency

frequency

128 samples from a speech signal sampled at 16000 Hz

The first 65 points of a 128 point DFT. Plot shows log of the magnitude spectrum

The first 513 points of a 1024 point DFT. Plot shows log of the magnitude spectrum

Zero padding a speech signal

4111756/18799D

Preemphasizing a speech signal

• The spectrum of the speech
signal naturally has lower
energy at higher frequencies

• This can be observed as a
downward trend on a plot of
the logarithm of the magnitude
spectrum of the signal

• For many applications this can
be undesirable
– E.g. Linear predictive modeling

of the spectrum

Log(average(magnitude spectrum))

4211756/18799D

• This spectral tilt can be
corrected by
preemphasizing the signal
– spreemp[n] = s[n] – α∗s[n-1]
– Typical value of α = 0.95

• This is a form of
differentiation that boosts
high frequencies

• This spectrum of the
preemphasized signal has
more horizontal trend
– Good for linear prediction

and other similar methods

Log(average(magnitude spectrum))

Preemphasizing a speech signal

4311756/18799D

The process of parametrization

The signal is processed in segments.
Segments are typically 25 ms wide.

4411756/18799D

The process of parametrization

The signal is processed in segments.
Segments are typically 25 ms wide.

Adjacent segments typically overlap
by 15 ms.

4511756/18799D

The process of parametrization

The signal is processed in segments.
Segments are typically 25 ms wide.

Adjacent segments typically overlap
by 15 ms.

4611756/18799D

The process of parametrization

The signal is processed in segments.
Segments are typically 25 ms wide.

Adjacent segments typically overlap
by 15 ms.

4711756/18799D

The process of parametrization

The signal is processed in segments.
Segments are typically 25 ms wide.

Adjacent segments typically overlap
by 15 ms.

4811756/18799D

The process of parametrization

The signal is processed in segments.
Segments are typically 25 ms wide.

Adjacent segments typically overlap
by 15 ms.

4911756/18799D

The process of parametrization

The signal is processed in segments.
Segments are typically 25 ms wide.

Adjacent segments typically overlap
by 15 ms.

5011756/18799D

Each segment is typically 20 or
25 milliseconds wide
Speech signals do not change
significantly within this short time interval

Segments shift every 10
milliseconds

The process of parametrization

5111756/18799D

Each segment is preemphasized

The process of parametrization

Preemphasized segment

The preemphasized segment is windowed

Preemphasized and
windowed segment

5211756/18799D

The DFT of the segment, and from it the
power spectrum of the segment is computed

The process of parametrization

Preemphasized and
windowed segment

Frequency (Hz)

P
ow

er = power spectrum

5311756/18799D

Auditory Perception
• Conventional Spectral analysis decomposes the signal into

a number of linearly spaced frequencies
– The resolution (differences between adjacent frequencies) is the

same at all frequencies

• The human ear, on the other hand, has non-uniform
resolution
– At low frequencies we can detect small changes in frequency
– At high frequencies, only gross differences can be detected

• Feature computation must be performed with similar
resolution
– Since the information in the speech signal is also distributed in a

manner matched to human perception

5411756/18799D

Matching Human Auditory Response

• Modify the spectrum to model the
frequency resolution of the human ear

• Warp the frequency axis such that small
differences between frequencies at lower
frequencies are given the same importance
as larger differences at higher frequencies

5511756/18799D

Linear frequency axis: equal increments of
frequency at equal intervals

Warping the frequency axis

5611756/18799D

Perceptually warped
frequency axis: unequal
increments of frequency
at equal intervals or
conversely, equal
increments of frequency
at unequal intervals

Warping function
(based on studies of
human hearing)

Linear frequency axis:
Sampled at uniform
intervals by an FFT

Warping the frequency axis

5711756/18799D

Perceptually warped
frequency axis: unequal
increments of frequency
at equal intervals or
conversely, equal
increments of frequency
at unequal intervals

Warping function
(based on studies of
human hearing)

Linear frequency axis:
Sampled at uniform
intervals by an FFT

Warping the frequency axis
)

700
1(log2595)(10

ffmel +=

A standard warping
function is the Mel
warping function

5811756/18799D

Power spectrum of
each frame

The process of parametrization

5911756/18799D

Power spectrum of
each frame

The process of parametrization

is warped in
frequency as per the
warping function

6011756/18799D

11756/18799D

Power spectrum of
each frame

The process of parametrization

is warped in
frequency as per the
warping function

61

Filter Bank

• Each hair cells in the human ear actually responds
to a band of frequencies, with a peak response at a
particular frequency

• To mimic this, we apply a bank of “auditory”
filters
– Filters are triangular

• An approximation: hair cell response is not triangular

– A small number of filters (40)
• Far fewer than hair cells (~3000)

6211756/18799D

Power spectrum of
each frame

The process of parametrization

is warped in
frequency as per the
warping function

Each intensity is
weighted by the
value of the filter at
that frequncy. This
picture shows a bank or
collection of triangular filters
that overlap by 50%

6311756/18799D

The process of parametrization

6411756/18799D

The process of parametrization

6511756/18799D

The process of parametrization

For each filter:
Each power spectral
value is weighted by
the value of the filter
at that frequency.

6611756/18799D

For each filter:
All weighted spectral
values are integrated
(added), giving one
value for the filter

The process of parametrization

6711756/18799D

All weighted spectral
values for each filter
are integrated
(added), giving one
value per filter

The process of parametrization

6811756/18799D

Additional Processing

• The Mel spectrum represents energies in
frequency bands
– Highly unequal in different bands

• Energy and variations in energy are both much much greater at
lower frequencies

• May dominate any pattern classification or template matching
scores

– High-dimensional representation: many filters
• Compress the energy values to reduce imbalance
• Reduce dimensions for computational tractability

– Also, for generalization: reduced dimensional
representations have lower variations across speakers
for any sound

6911756/18799D

Logarithm

All weighted spectral
values for each filter
are integrated
(added), giving one
value per filter

The process of parametrization

Compress Values

7011756/18799D

The process of parametrization

Logarithm

Log Mel spectrum

All weighted spectral
values for each filter
are integrated
(added), giving one
value per filter

Compress Values

7111756/18799D

The process of parametrization

Another transform
(DCT/inverse DCT)

Dim1 Dim2 Dim3 Dim4 Dim5 Dim6 Dim7 Dim8 Dim9

Logarithm

Log Mel spectrum

All weighted spectral
values for each filter
are integrated
(added), giving one
value per filter

Compress Values

7211756/18799D

The process of parametrization

Another transform
(DCT/inverse DCT)

The sequence is truncated
(typically after 13 values)

Dim1 Dim2 Dim3 Dim4 Dim5 Dim6 Dim7 Dim8 Dim9

Logarithm

Log Mel spectrum

All weighted spectral
values for each filter
are integrated
(added), giving one
value per filter

Dimensionality reduction

7311756/18799D

The process of parametrization

Another transform
(DCT/inverse DCT)

Dim 1
Dim 2
Dim 3
Dim 4
Dim 5
Dim 6
…

Giving one n-dimensional
vector for the frame

Logarithm

Log Mel spectrum

Mel Cepstrum

All weighted spectral
values for each filter
are integrated
(added), giving one
value per filter

7411756/18799D

11756/18799D

An example segment

400 sample segment (25 ms)
from 16khz signal preemphasized windowed

Power spectrum 40 point Mel spectrum Log Mel spectrum

Mel cepstrum

75

The entire speech signal is thus converted into a sequence of
vectors. These are cepstral vectors.
There are other ways of converting the speech signal into a
sequence of vectors

The process of feature extraction

7611756/18799D

Variations to the basic theme

• Perceptual Linear Prediction (PLP) features:
– ERB filters instead of MEL filters
– Cube-root compression instead of Log
– Linear-prediction spectrum instead of Fourier

Spectrum

• Auditory features
– Detailed and painful models of various

components of the human ear

7711756/18799D

Cepstral Variations from Filtering and Noise

• Microphone characteristics modify the spectral
characteristics of the captured signal
– They change the value of the cepstra

• Noise too modifies spectral characteristics

• As do speaker variations

• All of these change the distribution of the
cepstra

7811756/18799D

Effect of Speaker Variations, Microphone
Variations, Noise etc.

• Noise, channel and speaker variations change the
distribution of cepstral values

• To compensate for these, we would like to undo these
changes to the distribution

• Unfortunately, the precise nature of the distributions both
before and after the “corruption” is hard to know

7911756/18799D

Ideal Correction for Variations

• Noise, channel and speaker variations change the
distribution of cepstral values

• To compensate for these, we would like to undo these
changes to the distribution

• Unfortunately, the precise nature of the distributions both
before and after the “corruption” is hard to know

8011756/18799D

Effect of Noise Etc.

• Noise, channel and speaker variations change the
distribution of cepstral values

• To compensate for these, we would like to undo these
changes to the distribution

• Unfortunately, the precise position of the distributions of
the “good” speech is hard to know

? ?

?

8111756/18799D

• “Move” all utterances to have a mean of 0
• This ensures that all the data is centered at 0

– Thereby eliminating some of the mismatch

Solution: Move all distributions to a “standard”
location

8211756/18799D

• “Move” all utterances to have a mean of 0
• This ensures that all the data is centered at 0

– Thereby eliminating some of the mismatch

Solution: Move all distributions to a “standard”
location

8311756/18799D

• “Move” all utterances to have a mean of 0
• This ensures that all the data is centered at 0

– Thereby eliminating some of the mismatch

Solution: Move all distributions to a “standard”
location

8411756/18799D

• “Move” all utterances to have a mean of 0
• This ensures that all the data is centered at 0

– Thereby eliminating some of the mismatch

Solution: Move all distributions to a “standard”
location

8511756/18799D

Solution: Move all distributions to a “standard”
location

• “Move” all utterances to have a mean of 0
• This ensures that all the data is centered at 0

– Thereby eliminating some of the mismatch
8611756/18799D

Cepstra Mean Normalization

• For each utterance encountered (both in
“training” and in “testing”)

• Compute the mean of all cepstral vectors

• Subtract the mean out of all cepstral vectors

»

∑=
t

recordingrecording tc
Nframes

M)(1

recordingrecordingnormalized Mtctc −=)()(

8711756/18799D

Variance

• The variance of the distributions is also
modified by the corrupting factors

• This can also be accounted for by variance
normalization

These “spreads” are different

8811756/18799D

Variance Normalization

• Compute the standard deviation of the mean-
normalized cepstra

• Divide all mean-normalized cepstra by this
standard deviation

• The resultant cepstra for any recording have 0
mean and a variance of 1.0

∑=
t

normalizedrecording tc
Nframes

sd)(1 2

)(1)(var tc
sd

tc normalized
recording

normalized =

8911756/18799D

Histogram Normalization

• Go beyond Variances: Modify the entire
distribution

• “Histogram normalization” : make the histogram
of every recording be identical

• For each recording, for each cepstral value
– Compute percentile points
– Find a warping function that maps these percentile

points to the corresponding percentile points on a 0
mean unit variance Gaussian

– Transform the cepstra according to this function

9011756/18799D

Temporal Variations

• The cepstral vectors capture instantaneous
information only
– Or, more precisely, current spectral structure within the

analysis window
• Phoneme identity resides not just in the snapshot

information, but also in the temporal structure
– Manner in which these values change with time
– Most characteristic features

• Velocity: rate of change of value with time
• Acceleration: rate with which the velocity changes

• These must also be represented in the feature

9111756/18799D

Velocity Features

• For every component in the cepstrum for any
frame
– compute the difference between the corresponding

feature value for the next frame and the value for
the previous frame

– For 13 cepstral values, we obtain 13 “delta” values

• The set of all delta values gives us a “delta
feature”

9211756/18799D

C(t)

∆c(t)=c(t+τ)-c(t-τ)

The process of feature extraction

9311756/18799D

Representing Acceleration

• The acceleration represents the manner in which the
velocity changes

• Represented as the derivative of velocity
• The DOUBLE-delta or Acceleration Feature captures this
• For every component in the cepstrum for any frame

– compute the difference between the corresponding delta feature
value for the next frame and the delta value for the previous frame

– For 13 cepstral values, we obtain 13 “double-delta” values

• The set of all double-delta values gives us an “acceleration
feature”

9411756/18799D

C(t)

∆c(t)=c(t+τ)-c(t-τ)

∆∆c(t)=∆c(t+τ)-∆c(t-τ)

The process of feature extraction

9511756/18799D

Feature extraction

∆∆c(t)

∆c(t)

c(t)

9611756/18799D

Function of the frontend block in a
recognizer

FrontEnd

Audio

FeatureFrame

Derives other vector sequences
from the original sequence and
concatenates them to increase
the dimensionality of each vector
This is called feature computation 9711756/18799D

Other Operations
• Vocal Tract Length Normalization

– Vocal tracts of different people are different in length
– A longer vocal tract has lower resonant frequencies
– The overall spectral structure changes with the length of the vocal tract
– VTLN attempts to reduce variations due to vocal tract length

• Denoising
– Attempt to reduce the effects of noise on the featrues

• Discriminative feature projections
– Additional projection operations to enhance separation between

features obtained from signals representing different sounds

9811756/18799D

• ./SphinxTrain-1.0/bin.x86_64-unknown-linux-gnu/wave2feat
• [Switch] [Default] [Description]
• -help no Shows the usage of the tool
• -example no Shows example of how to use the tool
• -i Single audio input file
• -o Single cepstral output file
• -c Control file for batch processing
• -nskip If a control file was specified, the number of utterances to skip at the head of the file
• -runlen If a control file was specified, the number of utterances to process (see -nskip too)
• -di Input directory, input file names are relative to this, if defined
• -ei Input extension to be applied to all input files
• -do Output directory, output files are relative to this
• -eo Output extension to be applied to all output files
• -nist no Defines input format as NIST sphere
• -raw no Defines input format as raw binary data
• -mswav no Defines input format as Microsoft Wav (RIFF)
• -input_endian little Endianness of input data, big or little, ignored if NIST or MS Wav
• -nchans 1 Number of channels of data (interlaced samples assumed)
• -whichchan 1 Channel to process
• -logspec no Write out logspectral files instead of cepstra
• -feat sphinx SPHINX format - big endian
• -mach_endian little Endianness of machine, big or little
• -alpha 0.97 Preemphasis parameter
• -srate 16000.0 Sampling rate
• -frate 100 Frame rate
• -wlen 0.025625 Hamming window length
• -nfft 512 Size of FFT
• -nfilt 40 Number of filter banks
• -lowerf 133.33334 Lower edge of filters
• -upperf 6855.4976 Upper edge of filters
• -ncep 13 Number of cep coefficients
• -doublebw no Use double bandwidth filters (same center freq)
• -warp_type inverse_linear Warping function type (or shape)
• -warp_params Parameters defining the warping function
• -blocksize 200000 Block size, used to limit the number of samples used at a time when reading very large audio files
• -dither yes Add 1/2-bit noise to avoid zero energy frames
• -seed -1 Seed for random number generator; if less than zero, pick our own
• -verbose no Show input filenames

wav2feat : sphinx feature computation tool

9911756/18799D

• ./SphinxTrain-1.0/bin.x86_64-unknown-linux-
gnu/wave2feat
[Switch] [Default] [Description]
-help no Shows the usage of the tool
-example no Shows example of how to use the tool

wav2feat : sphinx feature computation tool

10011756/18799D

wav2feat : sphinx feature computation tool
./SphinxTrain-1.0/bin.x86_64-unknown-linux-gnu/wave2feat
-i Single audio input file
-o Single cepstral output file
-nist no Defines input format as NIST sphere
-raw no Defines input format as raw binary data
-mswav no Defines input format as Microsoft Wav
-logspec no Write out logspectral files instead

of cepstra
-alpha 0.97 Preemphasis parameter
-srate 16000.0 Sampling rate
-frate 100 Frame rate
-wlen 0.025625 Hamming window length
-nfft 512 Size of FFT
-nfilt 40 Number of filter banks
-lowerf 133.33334 Lower edge of filters
-upperf 6855.4976 Upper edge of filters
-ncep 13 Number of cep coefficients
-warp_type inverse_linear Warping function type (or shape)
-warp_params Parameters defining the warping function
-dither yes Add 1/2-bit noise to avoid zero energy

frames

10111756/18799D

Format of output File
• Four-byte integer header

– Specifies no. of floating point values to follow
– Can be used to both determine byte order and

validity of file

• Sequence of four-byte floating-point values

10211756/18799D

Inspecting Output
• sphinxbase-0.4.1/src/sphinx_cepview
• [NAME] [DEFLT] [DESCR]
• -b 0 The beginning frame 0-based.
• -d 10 Number of displayed coefficients.
• -describe 0 Whether description will be shown.
• -e 2147483647 The ending frame.
• -f Input feature file.
• -i 13 Number of coefficients in the feature

vector.
• -logfn Log file (default stdout/stderr)

10311756/18799D

Project 1b
• Write a routine for computing MFCC from audio

• Record multiple instances of digits
– Zero, One, Two etc.
– 16Khz sampling, 16 bit PCM
– Compute log spectra and cepstra

• No. of features = 13 for cepstra

– Visualize both spectrographically (easy using matlab)
• Note similarity in different instances of the same word

– Modify no. of filters to 30 and 25
• Patterns will remain, but be more blurry

– Record data with noise
• Degradation due to noise may be lesser on 25-filter outputs

• Allowed to use wav2feat or code from web
– Dan Ellis has some nice code on his page
– Must be integrated with audio capture routine

• Assuming kbhit for start. Stop of recording via automatic endpointing. 104

	Design and Implementation of Speech Recognition Systems
	First Step: Feature Extraction
	Feature Extraction (contd.)
	Sound Characteristics are in Frequency Patterns
	Computing “Features”
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Zero Padding
	Zero Padding
	Zero Padding
	Slide Number 37
	Zero Padding
	Zero Padding
	Slide Number 40
	Zero padding a speech signal
	Preemphasizing a speech signal
	Preemphasizing a speech signal
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Auditory Perception
	Matching Human Auditory Response
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Filter Bank
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Additional Processing
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	An example segment
	Slide Number 76
	Variations to the basic theme
	Cepstral Variations from Filtering and Noise
	Effect of Speaker Variations, Microphone Variations, Noise etc.
	Ideal Correction for Variations
	Effect of Noise Etc.
	Solution: Move all distributions to a “standard” location
	Solution: Move all distributions to a “standard” location
	Solution: Move all distributions to a “standard” location
	Solution: Move all distributions to a “standard” location
	Solution: Move all distributions to a “standard” location
	Cepstra Mean Normalization
	Variance
	Variance Normalization
	Histogram Normalization
	Temporal Variations
	Velocity Features
	Slide Number 93
	Representing Acceleration
	Slide Number 95
	Feature extraction
	Function of the frontend block in a recognizer
	Other Operations
	wav2feat : sphinx feature computation tool
	Slide Number 100
	wav2feat : sphinx feature computation tool
	Format of output File
	Inspecting Output
	Project 1b

