

Design and Implementation of Speech Recognition Systems

Spring 2013

Class 27: Rescoring, Nbest and Confidence 29 Apr 2013

Topics

- The backpointer table as a directed acyclic graph
- N-best path search through a graph
 - Stack decoder
 - -A*
- Confidence estimation
 - Forward Backward algorithm
- Acoustic Rescoring

The Directed Acyclic Graph

- A graph where every edge has a direction
- There are *no loops*
 - There is no path that revisits a node
- Such a graph must have some nodes that are purely source nodes
 - No incoming edges
- It also must have some nodes that are purely sink nodes
 - No outgoing edges

The Directed Acyclic Graph

- A graph where every edge has a direction
- Nodes may node node cost
- Edges may have edge cost
- Strictly equivalent: a graph with only edge costs
 - Node costs "pushed" onto edges

The shortest-path problem

- What is the shortest path from one node to another?
 - "Shortest" → least-cost
 - Could also mean most-score
 - If values assigned to nodes and edges represent scores instead of costs
 - We'll assume costs for now; easily modified to deal with scores
 - Simply flip "min" to "max" and vice versa

Dijkstra's algorithm (1959)

- Gives the cost of the shortest path between two nodes
- Condition: All costs are positive
 - I.e. traversing an edge is expensive
 - Addendum: visiting a node is expensive
 - For a DAG, node costs can be converted to edge costs by simply adding them to all outgoing edges from that node
 - Passing through a node or edge can never be profitable
 - Can never have negative cost

1. Set current node to "visited" state

- Indicated by blue color
- Cost of best path to current node is simply node cost
- Set best path cost of all other nodes to infinity

Set current node to "visited" state

2. Extend paths from current node to all of its unvisited children

- Add edge cost + node cost to get "current" path cost
- If current path cost to a node is *lower* than existing path cost,
 replace existing path cost with current path cost

- 1. Set current node to "visited" state
- 2. Extend paths from current node to all of its unvisited children
- 3. Select the "unvisited" node with lowest cost: set it to "visited"
 - If this is the destination node, terminate; shortest path cost found
 - If the lowest cost unvisited node has a cost of infinity, fail (no path).

- 1. Set current node to "visited" state
- 2. Extend paths from current node to all of its unvisited children
- 3. Select the "unvisited" node with lowest cost: set it to "visited"
 - If this is the destination node, terminate; shortest path cost found
 - If the lowest cost unvisited node has a cost of infinity, fail (no path)
- 4. Set the node to "current" and return to 2

- 1. Set current node to "visited" state
- 2. Extend paths from current node to all of its unvisited children
- 3. Select the "unvisited" node with lowest cost: set it to "visited"
 - If this is the destination node, terminate; shortest path cost found
 - If the lowest cost unvisited node has a cost of infinity, fail (no path)
- 4. Set the node to "current" and return to 2

 $n_3 + e_6 + n_4 + e_7 + n_5$ < $n_3 + e_4 + n_6 + e_{10} + n_5$?

- 1. Set current node to "visited" state
- 2. Extend paths from current node to all of its unvisited children
- 3. Select the "unvisited" node with lowest cost: set it to "visited"
 - If this is the destination node, terminate; shortest path cost found
 - If the lowest cost unvisited node has a cost of infinity, fail (no path)
- 4. Set the node to "current" and return to 2

- Set current node to "visited" state 1.
- Extend paths from current node to all of its unvisited children
- 3. Select the "unvisited" node with lowest cost: set it to "visited"
 - If this is the destination node, terminate; shortest path cost found
 - If the lowest cost unvisited node has a cost of infinity, fail (no path)
- Set the node to "current" and return to 2 4.

- 1. Set current node to "visited" state
- 2. Extend paths from current node to all of its unvisited children
- 3. Select the "unvisited" node with lowest cost: set it to "visited"
 - If this is the destination node, terminate; shortest path cost found
 - If the lowest cost unvisited node has a cost of infinity, fail (no path)
- 4. Set the node to "current" and return to 2

- 1. Set current node to "visited" state
- 2. Extend paths from current node to all of its unvisited children
- 3. Select the "unvisited" node with lowest cost: set it to "visited"
 - If this is the destination node, terminate; shortest path cost found
 - If the lowest cost unvisited node has a cost of infinity, fail (no path)
- 4. Set the node to "current" and return to 2

- 1. Set current node to "visited" state
- 2. Extend paths from current node to all of its unvisited children
- 3. Select the "unvisited" node with lowest cost: set it to "visited"
 - If this is the destination node, terminate; shortest path cost found
 - If the lowest cost unvisited node has a cost of infinity, fail (no path)
- 4. Set the node to "current" and return to 2

- Dijkstra's algorithm can be continued to find the shortest path score from the source node to all nodes in the graph
- Simply continue algorithm until either
 - All nodes are visited OR
 - All unvisited nodes have infinite cost
- Computational Cost
 - Naïve implementation $|V|^2$
 - |V| = no. of nodes
 - Optimal implementation: |E| + |V|log |V|
 - |E| = no. of edges

Problem 2: Computing *Total* path cost

 What is the total cost of all paths from all source nodes to any particular node?

Initialize: Set "total path score" for all nodes to 0

1. Mark source nodes

Source nodes have node scores

- 1. Mark source nodes
- 2. Extend paths from all source nodes to all children nodes
 - Update node scores

Updating Node Scores

- Extending a path: Cost of extended path:
 - Path score = f_{ext}(current path score, edge score, node score)
 - Typically $f_{ext}(a,b,c) = a+b+c$ or a*b*c
 - If edge and node scores are probabilities, we use a*b*c
- Converging paths: If K paths converge on a node, node score is:
 - node score = node score + f_{node} (path score1, path score2)
 - If node and edge scores are probabilities, we use f_{node}(a,b,c) = a+b+c

- Mark source nodes
- 2. Extend paths from all source nodes to all children nodes
- 3. Mark utilized sources and edges as "evaluated"
 - Mark all utilized edges as "evaluated"
 - Mark all current source nodes as "evaluated"

- Mark source nodes
- 2. Extend paths from all source nodes to all children nodes
- 3. Mark utilized sources and edges as "evaluated"
- 4. Mark all children nodes such that all incoming edges are evaluated as "source" nodes

- 1. Mark source nodes
- 2. Extend paths from all source nodes to all children nodes
- 3. Mark utilized sources and edges as "evaluated"
- 4. Mark all children nodes such that all incoming edges are evaluated as "source" nodes
- 5. If any "unevaluated" source nodes remain, return to 2, otherwise terminate

- 1. Mark source nodes
- 2. Extend paths from all source nodes to all children nodes
- 3. Mark utilized sources and edges as "evaluated"
- 4. Mark all children nodes such that all incoming edges are evaluated as "source" nodes
- 5. If any "unevaluated" source nodes remain, return to 2, otherwise terminate

- 1. Mark source nodes
- 2. Extend paths from all source nodes to all children nodes
- 3. Mark utilized sources and edges as "evaluated"
- 4. Mark all children nodes such that all incoming edges are evaluated as "source" nodes
- 5. If any "unevaluated" source nodes remain, return to 2, otherwise terminate

- 1. Mark source nodes
- 2. Extend paths from all source nodes to all children nodes
- 3. Mark utilized sources and edges as "evaluated"
- 4. Mark all children nodes such that all incoming edges are evaluated as "source" nodes
- 5. If any "unevaluated" source nodes remain, return to 2, otherwise terminate

- 1. Mark source nodes
- 2. Extend paths from all source nodes to all children nodes
- 3. Mark utilized sources and edges as "evaluated"
- 4. Mark all children nodes such that all incoming edges are evaluated as "source" nodes
- 5. If any "unevaluated" source nodes remain, return to 2, otherwise terminate

- 1. Mark source nodes
- 2. Extend paths from all source nodes to all children nodes
- 3. Mark utilized sources and edges as "evaluated"
- 4. Mark all children nodes such that all incoming edges are evaluated as "source" nodes
- 5. If any "unevaluated" source nodes remain, return to 2, otherwise terminate

- 1. Mark source nodes
- 2. Extend paths from all source nodes to all children nodes
- 3. Mark utilized sources and edges as "evaluated"
- 4. Mark all children nodes such that all incoming edges are evaluated as "source" nodes
- 5. If any "unevaluated" source nodes remain, return to 2, otherwise terminate

- 1. Mark source nodes
- 2. Extend paths from all source nodes to all children nodes
- 3. Mark utilized sources and edges as "evaluated"
- 4. Mark all children nodes such that all incoming edges are evaluated as "source" nodes
- 5. If any "unevaluated" source nodes remain, return to 2, otherwise terminate

- 1. Mark source nodes
- 2. Extend paths from all source nodes to all children nodes
- 3. Mark utilized sources and edges as "evaluated"
- 4. Mark all children nodes such that all incoming edges are evaluated as "source" nodes
- 5. If any "unevaluated" source nodes remain, return to 2, otherwise terminate

- 1. Mark source nodes
- 2. Extend paths from all source nodes to all children nodes
- 3. Mark utilized sources and edges as "evaluated"
- 4. Mark all children nodes such that all incoming edges are evaluated as "source" nodes
- 5. If any "unevaluated" source nodes remain, return to 2, otherwise terminate

- 1. Mark source nodes
- 2. Extend paths from all source nodes to all children nodes
- 3. Mark utilized sources and edges as "evaluated"
- 4. Mark all children nodes such that all incoming edges are evaluated as "source" nodes
- 5. If any "unevaluated" source nodes remain, return to 2, otherwise terminate

- 1. Mark source nodes
- 2. Extend paths from all source nodes to all children nodes
- 3. Mark utilized sources and edges as "evaluated"
- 4. Mark all children nodes such that all incoming edges are evaluated as "source" nodes
- 5. If any "unevaluated" source nodes remain, return to 2, otherwise terminate

Problem 2: The forward algorithm

- 1. Mark source nodes
- 2. Extend paths from all source nodes to all children nodes
- 3. Mark utilized sources and edges as "evaluated"
- 4. Mark all children nodes such that all incoming edges are evaluated as "source" nodes
- 5. If any "unevaluated" source nodes remain, return to 2, otherwise terminate

Problem 2: The forward algorithm

- 1. Mark source nodes
- 2. Extend paths from all source nodes to all children nodes
- 3. Mark utilized sources and edges as "evaluated"
- 4. Mark all children nodes such that all incoming edges are evaluated as "source" nodes
- 5. If any "unevaluated" source nodes remain, return to 2, otherwise terminate

The Forward Algorithm

- At termination: The final score of any node is the total path score of all paths from all source nodes to that node
- The total score of all sink nodes is the total score of all paths through the graph

The Backward Scores

 The forward algorithm computes total score of all paths from sources to any node

 We can similarly compute the total score of all paths from a node to all sink nodes

This is computed using a backward algorithm

Initialize: Set "total path score" for all nodes to 0

1. Mark sink nodes

Sink nodes have node scores

- Mark sink nodes
- 2. Extend paths *backwards* from all sink nodes to all *parent* nodes
 - Update node scores similarly to the forward algorithm

- Extending a path: Cost of extended path:
 - Path score = f_{ext}(current path score, edge score, node score)
 - Typically $f_{ext}(a,b,c) = a+b+c$ or a*b*c
 - If edge and node scores are probabilities, we use a*b*c
- Converging paths: If K paths converge on a node, node score is:
 - node score = node score + f_{node} (path score1, path score2)
 - For probabilistic graphs, $f_{node}(a,b,c) = a+b+c$

- Mark sink nodes
- Extend paths backwards from all sink nodes to all parent nodes
- 3. Mark utilized sources and edges as "evaluated"
 - Mark all utilized edges as "evaluated"
 - Mark all current source nodes as "evaluated"

- 1. Mark sink nodes
- 2. Extend paths *backwards* from all sink nodes to all *parent* nodes
- 3. Mark utilized sources and edges as "evaluated"
- 4. Mark all parent nodes such that all outgoing edges are evaluated as "sink" nodes

- Mark sink nodes
- 2. Extend paths *backwards* from all sink nodes to all *parent* nodes
- 3. Mark utilized sources and edges as "evaluated"
- 4. Mark all *parent* nodes such that all outgoing edges are evaluated as "sink" nodes
- 5. If any "unevaluated" source nodes remain, return to 2, otherwise terminate

- Mark sink nodes
- 2. Extend paths *backwards* from all sink nodes to all *parent* nodes
- 3. Mark utilized sources and edges as "evaluated"
- 4. Mark all *parent* nodes such that all outgoing edges are evaluated as "sink" nodes
- 5. If any "unevaluated" source nodes remain, return to 2, otherwise terminate

- Mark sink nodes
- 2. Extend paths *backwards* from all sink nodes to all *parent* nodes
- 3. Mark utilized sources and edges as "evaluated"
- 4. Mark all *parent* nodes such that all outgoing edges are evaluated as "sink" nodes
- 5. If any "unevaluated" source nodes remain, return to 2, otherwise terminate

- Mark sink nodes
- 2. Extend paths *backwards* from all sink nodes to all *parent* nodes
- 3. Mark utilized sources and edges as "evaluated"
- 4. Mark all *parent* nodes such that all outgoing edges are evaluated as "sink" nodes
- 5. If any "unevaluated" source nodes remain, return to 2, otherwise terminate

The Backward Algorithm

 At termination: The final score of any node is the total path score of all paths from that node to all sink nodes

The Forward-Backward Scores

 We can now compute the total score of all paths from all sources to all sinks that pass through a specific node

The Forward Backward Algorithm

- Total cost of all paths through node 4 = S₄ * B₄ / n₄
 - In general, for any node i, total cost = $S_i * B_i / n_i$
 - Assuming probability-based combination
- Forward score * Backward score / node score
 - S_i = forward score, B_i = backward score; n_i = node score
 - Must divide out n_i since it is included in both forward and backward scores
 - Division eliminates duplication

YET another graph problem: N-best

- We have seen how to find the score the shortest path between a source and a sink node
 - And, consequently, the shortest path itself

- But what is the length of the second shortest path?
 - Or the N-th shortest path
 - What are these paths?

The *n-shortest paths* problem

- What are the N shortest paths between the source and sink nodes?
 - The "Stack" decoder
 - The "A*" algorithm

- Begin at the source
 - The total cost of the path thus far is simply n₁
 - $S_1 = n_1$
 - Push "1:S₁" into a "stack"
 - "1" identifies the path, S₁ is its score

1. Pop current shortest partial path from stack

- 1. Pop current shortest partial path from stack
- 2. If: final node of partial path is sink node, output it
 - If desired number (N) of outputs obtained : terminate else: return to 1.

- 1. Pop current shortest partial path from stack
- 2. If: final node of partial path is sink node, output it
 - If desired number (N) of outputs obtained : terminate else: return to 1.

else: go to 3

3. Extend partial path by expanding all edges of final node on path

- 1. Pop current shortest partial path from stack
- 2. If: final node of partial path is sink node, output it
 - If desired number (N) of outputs obtained : terminate else: return to 1.

- 3. Extend partial path by expanding all edges of final node on path
- 4. Push all extended paths into stack
 - Arrange stack by increasing cost: lowest cost path on top

- 1. Pop current shortest partial path from stack
- 2. If: final node of partial path is sink node, output it
 - If desired number (N) of outputs obtained : terminate else: return to 1.

- 3. Extend partial path by expanding all edges of final node on path
- 4. Push all extended paths into stack
 - Arrange stack by increasing cost: lowest cost path on top
- 5. Return to 1.

- 1. Pop current shortest partial path from stack
- 2. If: final node of partial path is sink node, output it
 - If desired number (N) of outputs obtained : terminate else: return to 1.

- 3. Extend partial path by expanding all edges of final node on path
- 4. Push all extended paths into stack
 - Arrange stack by increasing cost: lowest cost path on top
- 5. Return to 1.

- 1. Pop current shortest partial path from stack
- 2. If: final node of partial path is sink node, output it
 - If desired number (N) of outputs obtained : terminate else: return to 1.

- 3. Extend partial path by expanding all edges of final node on path
- 4. Push all extended paths into stack
 - Arrange stack by increasing cost: lowest cost path on top
- 5. Return to 1.

- 1. Pop current shortest partial path from stack
- 2. If: final node of partial path is sink node, output it
 - If desired number (N) of outputs obtained : terminate else: return to 1.

- 3. Extend partial path by expanding all edges of final node on path
- 4. Push all extended paths into stack
 - Arrange stack by increasing cost: lowest cost path on top
- 5. Return to 1.

1. Pop current shortest partial path from stack

- 2. If: final node of partial path is sink node, output it
 - If desired number (N) of outputs obtained : terminate else: return to 1.

else: go to 3

- 3. Extend partial path by expanding all edges of final node on path
- 4. Push all extended paths into stack
 - Arrange stack by increasing cost: lowest cost path on top

5. Return to 1.

- 1. Pop current shortest partial path from stack
- 2. If: final node of partial path is sink node, output it
 - If desired number (N) of outputs obtained : terminate else: return to 1.

- 3. Extend partial path by expanding all edges of final node on path
- 4. Push all extended paths into stack
 - Arrange stack by increasing cost: lowest cost path on top
- 5. Return to 1.

 $S_{1,3,4,7} = S_{1,3,4} + e_9 + n_7$

- Pop current shortest partial path from stack 1.
- 2. If: final node of partial path is sink node, output it
 - If desired number (N) of outputs obtained: terminate else: return to 1.

else: go to 3

3. Extend partial path by expanding all edges of final node on path

- Push all extended paths into stack 4.
 - Arrange stack by increasing cost: lowest cost path on top
- 5. Return to 1.

- 1. Pop current shortest partial path from stack
- 2. If: final node of partial path is sink node, output it
 - If desired number (N) of outputs obtained : terminate else: return to 1.

- 3. Extend partial path by expanding all edges of final node on path
- 4. Push all extended paths into stack
 - Arrange stack by increasing cost: lowest cost path on top
- 5. Return to 1.

1. Pop current shortest partial path from stack

- 2. If: final node of partial path is sink node, output it
 - If desired number (N) of outputs obtained : terminate else: return to 1.

else: go to 3

- 3. Extend partial path by expanding all edges of final node on path
- 4. Push all extended paths into stack
 - Arrange stack by increasing cost: lowest cost path on top

5. Return to 1.

- 1. Pop current shortest partial path from stack
- 2. If: final node of partial path is sink node, output it
 - If desired number (N) of outputs obtained : terminate else: return to 1.

- 3. Extend partial path by expanding all edges of final node on path
- 4. Push all extended paths into stack
 - Arrange stack by increasing cost: lowest cost path on top
- 5. Return to 1.

- 1. Pop current shortest partial path from stack
- 2. If: final node of partial path is sink node, output it
 - If desired number (N) of outputs obtained : terminate else: return to 1.

- 3. Extend partial path by expanding all edges of final node on path
- 4. Push all extended paths into stack
 - Arrange stack by increasing cost: lowest cost path on top
- 5. Return to 1.

- 1. Pop current shortest partial path from stack
- 2. If: final node of partial path is sink node, output it
 - If desired number (N) of outputs obtained : terminate else: return to 1.

- 3. Extend partial path by expanding all edges of final node on path
- 4. Push all extended paths into stack
 - Arrange stack by increasing cost: lowest cost path on top
- 5. Return to 1.

- 1. Pop current shortest partial path from stack
- 2. If: final node of partial path is sink node, output it
 - If desired number (N) of outputs obtained : terminate else: return to 1.

- 3. Extend partial path by expanding all edges of final node on path
- 4. Push all extended paths into stack
 - Arrange stack by increasing cost: lowest cost path on top
- 5. Return to 1.

- 2. If: final node of partial path is sink node, output it
 - If desired number (N) of outputs obtained : terminate else: return to 1.

- 3. Extend partial path by expanding all edges of final node on path
- 4. Push all extended paths into stack
 - Arrange stack by increasing cost: lowest cost path on top
- 5. Return to 1.

- 2. If: final node of partial path is sink node, output it
 - If desired number (N) of outputs obtained : terminate else: return to 1.

- 3. Extend partial path by expanding all edges of final node on path
- 4. Push all extended paths into stack
 - Arrange stack by increasing cost: lowest cost path on top
- 5. Return to 1.

- 1. Pop current shortest partial path from stack
- 2. If: final node of partial path is sink node, output it
 - If desired number (N) of outputs obtained : terminate else: return to 1.

- 3. Extend partial path by expanding all edges of final node on path
- 4. Push all extended paths into stack
 - Arrange stack by increasing cost: lowest cost path on top
- 5. Return to 1.

- 1. Pop current shortest partial path from stack
- 2. If: final node of partial path is sink node, output it
 - If desired number (N) of outputs obtained : terminate else: return to 1.

- 3. Extend partial path by expanding all edges of final node on path
- 4. Push all extended paths into stack
 - Arrange stack by increasing cost: lowest cost path on top
- 5. Return to 1.

- 1. Pop current shortest partial path from stack
- 2. If: final node of partial path is sink node, output it
 - If desired number (N) of outputs obtained : terminate else: return to 1.

- 3. Extend partial path by expanding all edges of final node on path
- 4. Push all extended paths into stack
 - Arrange stack by increasing cost: lowest cost path on top
- 5. Return to 1.

- The algorithm continues until the desired number (N) of paths are output
- The process guarantees that these are the N shortest (lowest-cost) paths through the graph
- Computational complexity: Upper bound = N!
 - In practice, much much smaller
- Still, it has a problem:
 - Frequently its very slow
 - Why?...

Problem with the stack decoder

- The top of the stack is often dominated by paths that are close to the source
 - They tend to have lower costs than paths that are closer to the sink
- The algorithm will preferentially pop these
 - Effectively spending most of the time expanding shallow paths, instead of exploring the more promising deeper ones

The A* Algorithm

- Solution: *Predict the future*
 - Replace every score $S_{*,b}$ with $S_{*,b} + B_{b,sink}$
 - $S_{*,b}$ is the score of a path ending at node b
 - B_{b.sink} is a guess of the lowest cost score from b to the sink
- Note that setting $B_{b,sink} = 0$ results in the conventional stack decoder
- Guarantee: If B_{b,sink} is a true lower bound on the the best path score from b to the sink, the A* algorithm returns the correct results
 - I.e. the same result as the stack decoder
 - Only much much faster

The A^* algorithm

- First: Compute the best path cost from each node to the sink node
 - Can be computed using Dijkstra's algorithm

The A^* algorithm

- Begin at the source
 - The total cost of the path is the forward path cost to the node PLUS the (guessed) best path cost to the sink

•
$$S_1 = n_1 + B_1$$

- Push "1:S₁" into a "stack"
 - "1" identifies the path, S₁ is its score

- 1. Pop current shortest partial path from stack
- 2. If: final node of partial path is sink node, output it
 - If desired number (N) of outputs obtained : terminate else: return to 1.

3. Extend partial path by expanding all edges of final node on path

- NOTE: Modified Score Computation
- Subtract B₁
 - Subtract previous (best guess of) lowest cost of remaining path to sink
- Add B_{node}
 - Add *current* (best guess of) of lowest cost of remaining path from current node to sink

- Pop current shortest partial path from stack
- 2. If: final node of partial path is sink node, output it
 - If desired number (N) of outputs obtained: terminate else: return to 1.

- Extend partial path by expanding all edges of final node on path 3.
- Push all extended paths into stack 4.
 - Arrange stack by increasing cost: lowest cost path on top

- 2. If: final node of partial path is sink node, output it
 - If desired number (N) of outputs obtained : terminate else: return to 1.

- 3. Extend partial path by expanding all edges of final node on path
- 4. Push all extended paths into stack
 - Arrange stack by increasing cost: lowest cost path on top

5. Return to 1.

- 1. Pop current shortest partial path from stack
- 2. If: final node of partial path is sink node, output it
 - If desired number (N) of outputs obtained : terminate else: return to 1.

- 3. Extend partial path by expanding all edges of final node on path
- 4. Push all extended paths into stack
 - Arrange stack by increasing cost: lowest cost path on top
- 5. Return to 1.

- 2. If: final node of partial path is sink node, output it
 - If desired number (N) of outputs obtained : terminate else: return to 1.

3. Extend partial path by expanding all edges of final node on path

- 4. Push all extended paths into stack
 - Arrange stack by increasing cost: lowest cost path on top
- 5. Return to 1.

The A* Algorithm

 The A* proceeds as the stack decoder does, with the modification that predicted future scores are always incorporated

Caveats:

- For the predicted future score do not include the score of the first node
 - To ensure that the node score is not included twice in any path score
 - E.g. B₃ must not include n₃
 - This can be done by explicitly subtracting out n₃ from the best path score computed by Dijkstra's algorithm

Returning to ASR

 We now apply what we have learned to address some problems in speech recognition

- N-best generation
- Rescoring
- Confidence estimation

The Backpointer Table is a Tree

Note LM probabilities now

The BackPointer Table is a TREE

The backpointer table is a tree

The BackPointer Table is a TREE

The backpointer table is a tree

The Backpointer Table

- Each entry in the BP table has:
 - An end time
 - An implicit start time
 - End time of parent +1
 - A word identity
 - A node score
 - Total score to node total score to parent
 - Node score may be further separated into
 - Acoustic score
 - Language score
 - Must keep track of acoustic and language model scores separately for this

Id,time,parent,score,word

0, 0,- 1, 0, <s></s>
1, 1, 0, s1, SIL
2, 1, 1, s2, APRICOT
3, 1, 1, s3, APPLE
4, 2, 1, s4, SIL
5, 2, 2, s5, APRICOT
6, 2, 0, s6, APPLE
7, 3, 6, s7, SIL
8, 3, 2, s8, APRICOT
9, 3, 4, s9, APPLE
<u> </u>

A different view of the BP table

◆ Each rectangle is a BP table entry, with a start time, an end time, a word id, and a score. Some entries have no children

The BP Table as a Tree

- **♦** Introduce the begin-utterance and end-utterance markers
- Note: Each node has a score
 - Acoustic score and LM score
 - Can be separated; Acoustic score stays at node, LM score rides incoming edge

The BP Table as a **DAG**

- Add additional edges
 - Only between nodes whose timestamps match up
 - End frame of one nodes is immediately before first frame of next
 - New edges can be assigned appropriate LM score
 - Or may be assigned a score via reasonable heuristics

The BP Table as a **DAG**

- ◆ "Approximate" edges
 - ◆ Add edges between nodes if they are only "slightly" misaligned
 - i.e. have a gap of less than X frames, or overlap by Y frames
 - ◆ Typical values: X = Y = 2.

The **LATTICE**

- The resulting structure is a DAG called the "LATTICE"
- It represents the set of all major word-sequence hypotheses that were "considered" by the recognizer
- ◆ It includes the final most-probable (best match) word sequence that was obtained, but also much more..
- Note: It's a probabilistic structure
 - Each node and edge contain probability (or log prob) scores

Returning to ASR

- We now apply what we have learned to address some problems in speech recognition
- N-best generation
- Rescoring
- Confidence estimation
- We will perform all of this using the recognition lattice

Problem 1: N-best hypotheses

- The recognizer always outputs the bestscoring word sequence hypothesis
- What is the second-best scoring hypothesis?
- The third-best scoring hypothesis?
- The Nth-best scoring hypothesis?

• The *N-best* output procedure

The Stack Decoder for N-best hypotheses

- Apply the stack decoding algorithm to obtain the N-best paths from <s> to </s>
 - Assuming single source node: <s>
 - Assuming one or more sink nodes: </s>

The A* Decoder for N-best hypotheses

- Generally preferable to use the A* algorithm instead of the stack decoder
 - For reasons explained earlier

Rescoring: Using a different LM

• Common tactic:

- Perform first pass of recognition with a "simple" language model
 - E.g. a bigram LM
 - Much more compact graph, much more efficient search
- Find the best path through lattice using a higher-order (or more detailed) LM
- Also called Rescoring
- Easily performed using a modification of the stack or A* decoder

Rescoring through A*

- Append one-step extensions to current path
- Factor in cost of one-step extensions
- The edge costs carry LM probabilities
- Refer to word history and obtain LM probabilities from new LM
 - Edge score = P(W(node) | Word history)

Confidence: How sure are we

- How sure can we be that the recognizer output is correct?
 - Often critical to know
 - If we are not confident, we must take corrective action
- No really robust method to compute confidence
- Confidence is often obtained as the a posteriori probability

Confidence as a posteriori probability

- Any word in our hypothesis represents a node in the lattice
- The confidence assigned to the word is the a posteriori probability of the node
 - A number between 0 and 1
 - $-0 \rightarrow$ sure that its wrong; $1 \rightarrow$ sure that its correct
 - Caveat: We can be wrong when we're sure..

Computing a posteriori probability

- A posteriori probability:
 - Total probability of all paths through node / total probability of graph
- We already know how to compute these

Assigning confidences

- For each node representing word in hypothesis:
 Compute total probability of all paths through node
 - Using forward-backward algorithm given earlier
- Compute total probability of graph
 - Also using the forward-backward algorithm

Assigning confidences

- For each node representing word in hypothesis:
 - Confidence = total prob of paths through node/ total prob
- Can in fact be computed for every node in the lattice

Topics covered

- N-best generation
- Rescoring
- Confidence estimation

- Using:
 - A*
 - Combines Dijkstra's algorithm and stack decoding
 - Forward-Backward algorithm

Additional topics

- Topics remaining:
- Improved confidence scoring
- Acoustic rescoring
- Adaptation
- Neural network methods