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Topics

The backpointer table as a directed acyclic
graph

N-best path search through a graph

— Stack decoder

— A*

Confidence estimation

— Forward Backward algorithm

Acoustic Rescoring



The Directed Acyclic Graph

A graph where every edge has a direction

There are no loops
— There is no path that revisits a node

Such a graph must have some nodes that are purely source nodes
— No incoming edges

It also must have some nodes that are purely sink nodes
— No outgoing edges



The Directed Acyclic Graph

A graph where every edge has a direction
Nodes may node node cost
Edges may have edge cost

Strictly equivalent: a graph with only edge costs

— Node costs “pushed” onto edges



The shortest-path problem
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 What is the shortest path from one node to another?
— “Shortest” =2 least-cost

— Could also mean most-score

* If values assigned to nodes and edges represent scores instead
of costs

* We’ll assume costs for now; easily modified to deal with scores

— Simply flip “min” to “max” and vice versa



Dzkstras algorithm (1959)

* QGives the cost of the shortest path between two nodes
* Condition: All costs are positive

— l.e. traversing an edge is expensive
— Addendum: visiting a node is expensive

* For a DAG, node costs can be converted to edge costs by simply
adding them to all outgoing edges from that node

— Passing through a node or edge can never be profitable

* Can never have negative cost



Dykstras algorithm
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1. Set current node to “visited” state
— Indicated by blue color
— Cost of best path to current node is simply node cost
— Set best path cost of all other nodes to infinity



Dykstras algorithm
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Set current node to “visited” state
Extend paths from current node to all of its unvisited children

— Add edge cost + node cost to get “current” path cost

— If current path cost to a node is lower than existing path cost,
replace existing path cost with current path cost




Dykstras algorithm
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1. Set current node to “visited” state
2. Extend paths from current node to all of its unvisited children
3. Select the “unvisited” node with lowest cost: set it to “visited”

— If this is the destination node, terminate; shortest path cost found
— If the lowest cost unvisited node has a cost of infinity, fail (no path).




Dykstras algorithm
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Set current node to “visited” state

Extend paths from current node to all of its unvisited children
Select the “unvisited” node with lowest cost: set it to “visited”

If this is the destination node, terminate; shortest path cost found
If the lowest cost unvisited node has a cost of infinity, fail (no path)

Set the node to “current” and return to 2



Dykstras algorithm
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Set current node to “visited” state

Extend paths from current node to all of its unvisited children
Select the “unvisited” node with lowest cost: set it to “visited”

If this is the destination node, terminate; shortest path cost found
If the lowest cost unvisited node has a cost of infinity, fail (no path)

Set the node to “current” and return to 2
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Set current node to “visited” state
Extend paths from current node to all of its unvisited children

Select the “unvisited” node with lowest cost: set it to “visited”
— If this is the destination node, terminate; shortest path cost found
— If the lowest cost unvisited node has a cost of infinity, fail (no path)

Set the node to “current” and return to 2



Dykstras algorithm
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Set current node to “visited” state
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Extend paths from current node to all of its unvisited children
Select the “unvisited” node with lowest cost: set it to “visited”

If this is the destination node, terminate; shortest path cost found
If the lowest cost unvisited node has a cost of infinity, fail (no path)

Set the node to “current” and return to 2



Dykstras algorithm
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Set current node to “visited” state
Extend paths from current node to all of its unvisited children

Select the “unvisited” node with lowest cost: set it to “visited”
— If this is the destination node, terminate; shortest path cost found
— If the lowest cost unvisited node has a cost of infinity, fail (no path)

Set the node to “current” and return to 2
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Dykstras algorithm  [gyesrmn
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Set current node to “visited” state
Extend paths from current node to all of its unvisited children

Select the “unvisited” node with lowest cost: set it to “visited”
— If this is the destination node, terminate; shortest path cost found
— If the lowest cost unvisited node has a cost of infinity, fail (no path)

Set the node to “current” and return to 2



Dykstras algorithm  [gyesrmn
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Set current node to “visited” state
Extend paths from current node to all of its unvisited children

Select the “unvisited” node with lowest cost: set it to “visited”
— If this is the destination node, terminate; shortest path cost found
— If the lowest cost unvisited node has a cost of infinity, fail (no path)

Set the node to “current” and return to 2



Dzjkstras Algorithm

Dijkstra’s algorithm can be continued to find the
shortest path score from the source node to all nodes

in the graph

Simply continue algorithm until either

— All nodes are visited OR
— All unvisited nodes have infinite cost

Computational Cost
— Naive implementation |V|?
* |V| =no. of nodes
— Optimal implemantation: |E| + |V]|log | V]

* |E| = no. of edges
17



Problem 2: Computing Toza/ path cost

 What is the total cost of all paths from all
source nodes to any particular node?
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Problem 2: The forward algorithm

* |nitialize: Set “total path score” for all nodesto 0
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Problem 2: The torward algorithm

1. Mark source nodes
— Source nodes have node scores

20



Problem 2: The forward algorithm

1. Mark source nodes

2. Extend paths from all source nodes to all
children nodes

— Update node scores

21



Updating Node Scores

Extending a path: Cost of extended path:
— Path score =f_,(current path score, edge score, node score)
— Typically f_.(a,b,c) =a+b+c or a*b*c
— If edge and node scores are probabilities, we use a*b*c

Converging paths: If K paths converge on a node, node score is:
— node score = node score +f__,.(path scorel, path score2)

— If node and edge scores are probabilities, we use f__,.(a,b,c) = a+b+c

node

22



Problem 2: The forward algorithm

1. Mark source nodes
2. Extend paths from all source nodes to all children nodes
3. Mark utilized sources and edges as “evaluated”

—  Mark all utilized edges as “evaluated”
— Mark all current source nodes as “evaluated”
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Problem 2: The forward algorithm
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Mark source nodes
Extend paths from all source nodes to all children nodes
Mark utilized sources and edges as “evaluated”

Mark all children nodes such that all incoming edges are
evaluated as “source” nodes
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Problem 2: The torward algorithm
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Mark source nodes
Extend paths from all source nodes to all children nodes
Mark utilized sources and edges as “evaluated”

Mark all children nodes such that all incoming edges are evaluated as
“source” nodes

If any “unevaluated” source nodes remain, return to 2, otherwise
terminate
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Problem 2: The torward algorithm
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Mark source nodes
Extend paths from all source nodes to all children nodes
Mark utilized sources and edges as “evaluated”

Mark all children nodes such that all incoming edges are evaluated as
“source” nodes

If any “unevaluated” source nodes remain, return to 2, otherwise
terminate
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Problem 2: The torward algorithm
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Mark source nodes
Extend paths from all source nodes to all children nodes
Mark utilized sources and edges as “evaluated”

Mark all children nodes such that all incoming edges are evaluated as
“source” nodes

If any “unevaluated” source nodes remain, return to 2, otherwise
terminate
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Problem 2: The torward algorithm
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Mark source nodes
Extend paths from all source nodes to all children nodes
Mark utilized sources and edges as “evaluated”

Mark all children nodes such that all incoming edges are evaluated as
“source” nodes

If any “unevaluated” source nodes remain, return to 2, otherwise
terminate
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Problem 2: The torward algorithm
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Mark source nodes
Extend paths from all source nodes to all children nodes
Mark utilized sources and edges as “evaluated”

Mark all children nodes such that all incoming edges are evaluated as
“source” nodes

If any “unevaluated” source nodes remain, return to 2, otherwise
terminate
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Problem 2: The torward algorithm
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Mark source nodes
Extend paths from all source nodes to all children nodes
Mark utilized sources and edges as “evaluated”

Mark all children nodes such that all incoming edges are evaluated as
“source” nodes

If any “unevaluated” source nodes remain, return to 2, otherwise
terminate
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Problem 2: The torward algorithm
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Mark source nodes
Extend paths from all source nodes to all children nodes
Mark utilized sources and edges as “evaluated”

Mark all children nodes such that all incoming edges are evaluated as
“source” nodes

If any “unevaluated” source nodes remain, return to 2, otherwise
terminate
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Problem 2: The torward algorithm
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Mark source nodes
Extend paths from all source nodes to all children nodes
Mark utilized sources and edges as “evaluated”

Mark all children nodes such that all incoming edges are evaluated as
“source” nodes

If any “unevaluated” source nodes remain, return to 2, otherwise
terminate
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Problem 2: The torward algorithm
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Mark source nodes
Extend paths from all source nodes to all children nodes
Mark utilized sources and edges as “evaluated”

Mark all children nodes such that all incoming edges are evaluated as
“source” nodes

If any “unevaluated” source nodes remain, return to 2, otherwise
terminate

33



Problem 2: The torward algorithm
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Mark source nodes
Extend paths from all source nodes to all children nodes
Mark utilized sources and edges as “evaluated”

Mark all children nodes such that all incoming edges are evaluated as
“source” nodes

If any “unevaluated” source nodes remain, return to 2, otherwise
terminate
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Problem 2: The torward algorithm
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Mark source nodes
Extend paths from all source nodes to all children nodes
Mark utilized sources and edges as “evaluated”

Mark all children nodes such that all incoming edges are evaluated as
“source” nodes

If any “unevaluated” source nodes remain, return to 2, otherwise
terminate
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Problem 2: The torward algorithm
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Mark source nodes
Extend paths from all source nodes to all children nodes
Mark utilized sources and edges as “evaluated”

Mark all children nodes such that all incoming edges are evaluated as
“source” nodes

If any “unevaluated” source nodes remain, return to 2, otherwise
terminate
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Problem 2: The torward algorithm
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Mark source nodes
Extend paths from all source nodes to all children nodes
Mark utilized sources and edges as “evaluated”

Mark all children nodes such that all incoming edges are evaluated as
“source” nodes

If any “unevaluated” source nodes remain, return to 2, otherwise
terminate
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Problem 2: The torward algorithm

W

Mark source nodes
Extend paths from all source nodes to all children nodes
Mark utilized sources and edges as “evaluated”

Mark all children nodes such that all incoming edges are evaluated as
“source” nodes

If any “unevaluated” source nodes remain, return to 2, otherwise
terminate
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The Forward Algorithm

* At termination: The final score of any node is the
total path score of all paths from all source nodes
to that node

* The total score of all sink nodes is the total score
of all paths through the graph
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The Backward Scores

* The forward algorithm computes total score of
all paths from sources to any node

 We can similarly compute the total score of all
paths from a node to all sink nodes

* This is computed using a backward algorithm
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Problem 3: The backward algorithm

* |nitialize: Set “total path score” for all nodesto 0
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Problem 3: The backward algorithm

1. Mark sink nodes
— Sink nodes have node scores
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Problem 3: The backward algorithm

Mark sink nodes

. Extend paths backwards from all sink nodes to
all parent nodes

— Update node scores similarly to the forward
algorithm

43



Problem 3: The backward algorithm
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* Extending a path: Cost of extended path:
— Path score =f_,(current path score, edge score, node score)

— Typically f_.(a,b,c) =a+b+c or a*b*c
— If edge and node scores are probabilities, we use a*b*c

e Converging paths: If K paths converge on a node, node score is:
— node score = node score +f__,.(path scorel, path score2)

— For probabilistic graphs, f,4.(a,b,c) = a+b+c

44



Problem 3: The backward algorithm
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Mark sink nodes

Extend paths backwards from all sink nodes to all parent
nodes

Mark utilized sources and edges as “evaluated”
— Mark all utilized edges as “evaluated”
— Mark all current source nodes as “evaluated”
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Problem 3: The backward algorithm
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Mark sink nodes
Extend paths backwards from all sink nodes to all parent nodes
Mark utilized sources and edges as “evaluated”

Mark all parent nodes such that all outgoing edges are evaluated
as “sink” nodes
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Problem 3: The backward algorithm
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Mark sink nodes
Extend paths backwards from all sink nodes to all parent nodes
Mark utilized sources and edges as “evaluated”

Mark all parent nodes such that all outgoing edges are evaluated as
“sink” nodes

If any “unevaluated” source nodes remain, return to 2, otherwise

terminate
47



Problem 3: The backward algorithm
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Mark sink nodes
Extend paths backwards from all sink nodes to all parent nodes
Mark utilized sources and edges as “evaluated”

Mark all parent nodes such that all outgoing edges are evaluated as
“sink” nodes

If any “unevaluated” source nodes remain, return to 2, otherwise

terminate
48



Problem 3: The backward algorithm
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Mark sink nodes
Extend paths backwards from all sink nodes to all parent nodes
Mark utilized sources and edges as “evaluated”

Mark all parent nodes such that all outgoing edges are evaluated as
“sink” nodes

If any “unevaluated” source nodes remain, return to 2, otherwise

terminate
49



Problem 3: The backward algorithm
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Mark sink nodes
Extend paths backwards from all sink nodes to all parent nodes
Mark utilized sources and edges as “evaluated”

Mark all parent nodes such that all outgoing edges are evaluated as
“sink” nodes

If any “unevaluated” source nodes remain, return to 2, otherwise

terminate
50



The Backward Algorithm

e At termination: The final score of any node is
the total path score of all paths from that
node to all sink nodes

51



The Forward-Backward Scores

 We can now compute the total score of all
paths from all sources to all sinks that pass
through a specific node
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The Forward Backward Algorithm

Forward scores Backward scores

 Total cost of all paths throughnode4= S,*B,/n,
— In general, for any node i, total cost= 'S, * B. / n,
— Assuming probability-based combination

 Forward score * Backward score / node score
— S, = forward score, B, = backward score; n, = node score
— Must divide out n; since it is included in both forward and backward scores
— Division eliminates duplication
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YET another graph problem: N-best

e We have seen how to find the score the

shortest path between a source and a sink
node

— And, consequently, the shortest path itself

 But what is the length of the second shortest
path?
— Or the N-th shortest path
— What are these paths?

54



The n-shortest paths problem

 What are the N shortest paths between the
source and sink nodes?

— The “Stack” decoder
— The “A*” algorithm



The stack decoder

* Begin at the source

— The total cost of the path thus far is simply n,
* 5=
— Push “1:S,” into a “stack”

* “1” identifies the path, S, is its score



The stack decoder

1. Pop current shortest partial path from stack



The stack decoder

N
/ 1: S,
] Complete path?

Q (final node 7?)

1. Pop current shortest partial path from stack

2. If: final node of partial path is sink node, output it

— If desired number (N) of outputs obtained : terminate
else: returnto 1.

else: goto 3



The stack decoder

1. Pop current shortest partial path from stack

2. If: final node of partial path is sink node, output it

— If desired number (N) of outputs obtained : terminate
else: returnto 1.

else: goto 3
3. Extend partial path by expanding all edges of final node on path



The stack decoder
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Pop current shortest partial path from stack

If . final node of partial path is sink node, output it

el

If desired number (N) of outputs obtained : terminate
else: return to 1.

se:goto3
Extend partial path by expanding all edges of final node on path

Push all extended paths into stack
Arrange stack by increasing cost: lowest cost path on top



The stack decoder

1. Pop current shortest partial path from stack

2. If: final node of partial path is sink node, output it

— If desired number (N) of outputs obtained : terminate
else: return to 1.

else: goto 3
3. Extend partial path by expanding all edges of final node on path

4. Push all extended paths into stack
—  Arrange stack by increasing cost: lowest cost path on top

5. Returntol.



The stack decoder
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3.
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Pop current shortest partial path from stack

If . final node of partial path is sink node, output it

— If desired number (N) of outputs obtained : terminate
else: return to 1.

else:goto 3
Extend partial path by expanding all edges of final node on path

Push all extended paths into stack
—  Arrange stack by increasing cost: lowest cost path on top

Return to 1.



The stack decoder
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4.

5.

Pop current shortest partial path from stack

If . final node of partial path is sink node, output it

— If desired number (N) of outputs obtained : terminate
else: return to 1.

else: goto 3
Extend partial path by expanding all edges of final node on path

Push all extended paths into stack
—  Arrange stack by increasing cost: lowest cost path on top

Return to 1.



The stack decoder
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1. Pop current shortest partial path from stack

2. If: final node of partial path is sink node, output it

— If desired number (N) of outputs obtained : terminate
else: return to 1.

else: goto 3
3. Extend partial path by expanding all edges of final node on path

4. Push all extended paths into stack
—  Arrange stack by increasing cost: lowest cost path on top

5. Returnto 1.



The stack decoder
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1. Pop current shortest partial path from stack

2. If: final node of partial path is sink node, output it

— If desired number (N) of outputs obtained : terminate
else: return to 1.

else: goto 3
3. Extend partial path by expanding all edges of final node on path

4. Push all extended paths into stack
—  Arrange stack by increasing cost: lowest cost path on top

5. Returntol.



The stack decoder
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1. Pop current shortest partial path from stack

2. If: final node of partial path is sink node, output it

— If desired number (N) of outputs obtained : terminate
else: return to 1.

else:goto 3
3. Extend partial path by expanding all edges of final node on path

4. Push all extended paths into stack
—  Arrange stack by increasing cost: lowest cost path on top

5. Returnto 1.



The stack decoder
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1. Pop current shortest partial path from stack
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2. If: final node of partial path is sink node, output it

— If desired number (N) of outputs obtained : terminate
else: return to 1.

else: goto 3
3. Extend partial path by expanding all edges of final node on path

4. Push all extended paths into stack
—  Arrange stack by increasing cost: lowest cost path on top

5. Returnto 1.



The stack decoder

12:S,,
1,3,4,7: 51347 1)314)5: S:]_,:-?,,4'5
1,3,6: S, .¢ 1,3,4,6: S1,3,4,6

1,3,4,5: S, , 45|

1,3,4,7: S1347

1,3,4,6: S;546

1. Pop current shortest partial path from stack

2. If: final node of partial path is sink node, output it

— If desired number (N) of outputs obtained : terminate
else: return to 1.

else: goto 3
3. Extend partial path by expanding all edges of final node on path

4. Push all extended paths into stack
—  Arrange stack by increasing cost: lowest cost path on top

5. Returnto 1.



The stack decoder
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1. Pop current shortest partial path from stack

2. If: final node of partial path is sink node, output it

— If desired number (N) of outputs obtained : terminate
else: return to 1.

else: goto 3
3. Extend partial path by expanding all edges of final node on path

4. Push all extended paths into stack
—  Arrange stack by increasing cost: lowest cost path on top

5. Returntol.



The stack decoder
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Complete path?

Q (final node=7?)

1. Pop current shortest partial path from stack

2. If: final node of partial path is sink node, output it

— If desired number (N) of outputs obtained : terminate
else: return to 1.

else:goto 3
3. Extend partial path by expanding all edges of final node on path

4. Push all extended paths into stack
—  Arrange stack by increasing cost: lowest cost path on top

5. Returnto 1.



The stack decoder
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1. Pop current shortest partial path from stack

2. If: final node of partial path is sink node, output it

— If desired number (N) of outputs obtained : terminate
else: return to 1.

else: goto 3
3. Extend partial path by expanding all edges of final node on path

4. Push all extended paths into stack
—  Arrange stack by increasing cost: lowest cost path on top

5. Returnto 1.



The stack decoder
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1. Pop current shortest partial path from stack

2. If: final node of partial path is sink node, output it

— If desired number (N) of outputs obtained : terminate
else: return to 1.

else: goto 3
3. Extend partial path by expanding all edges of final node on path
4. Push all extended paths into stack

—  Arrange stack by increasing cost: lowest cost path on top
5. Returnto 1.



The stack decoder

1. Pop current shortest partial path from stack

2. If: final node of partial path is sink node, output it

— If desired number (N) of outputs obtained : terminate
else: return to 1.

else: goto 3
3. Extend partial path by expanding all edges of final node on path

4. Push all extended paths into stack
—  Arrange stack by increasing cost: lowest cost path on top

5. Returntol.



The stack decoder

/ o
1,2,4. 51’2’4 1,3,4,7: S1347
1,25 S,,s Complete path?

1,3,6: S, 36
1,3,4,5: S, 3,c
1,3,4,6° S,34c

_ﬁ

1. Pop current shortest partial path from stack

Q (final node 7?)
£, @ YES!

1,3,4,7: S;344

2. If: final node of partial path is sink node, output it

— If desired number (N) of outputs obtained : terminate
else: return to 1.

else: goto 3
3. Extend partial path by expanding all edges of final node on path

4. Push all extended paths into stack
—  Arrange stack by increasing cost: lowest cost path on top

5. Returnto 1.



The stack decoder

/ \
1,2,4. 51’2’4 1,3,4,7: S1347
1,2,5: S, 5, Complete path?
1,3,6: Sl'3._:_6 Q (final node 7?)
1,3,4,5: S;44c VES|
1,3,4,6° S,34c €1

_ﬁ

1. Pop current shortest partial path from stack

1,3,4,7: S;344

2. If: final node of partial path is sink node, output it

— If desired number (N) of outputs obtained : terminate
else: returnto 1.

else: goto 3
3. Extend partial path by expanding all edges of final node on path

4. Push all extended paths into stack
—  Arrange stack by increasing cost: lowest cost path on top

5. Returnto 1.



The stack decoder

2.

3.
4.

5.

Pop current shortest partial path from stack

el

If . final node of partial path is sink node, output it

If desired number (N) of outputs obtained : terminate
else: return to 1.

se:goto3
Extend partial path by expanding all edges of final node on path

Push all extended paths into stack
Arrange stack by increasing cost: lowest cost path on top

Return to 1.



The stack decoder

ya )
1,2,5: S, 52 12,45 5124
1,3,6: S, ;¢ Complete path?
1,3,4,5: S,34¢ Q (final node=77?)
1,3,4,6: S13456
O\
L
1,3,4,7: S;54-
1. Pop current shortest partial path from stack
2. If: final node of partial path is sink node, output it
— If desired number (N) of outputs obtained : terminate
else: return to 1.
else:goto 3
3. Extend partial path by expanding all edges of final node on path
4. Push all extended paths into stack

5.

—  Arrange stack by increasing cost: lowest cost path on top

Return to 1.



The stack decoder

1. Pop current shortest partial path from stack

2. If: final node of partial path is sink node, output it

— If desired number (N) of outputs obtained : terminate
else: return to 1.

else: goto 3
3. Extend partial path by expanding all edges of final node on path

4. Push all extended paths into stack
—  Arrange stack by increasing cost: lowest cost path on top

5. Returnto 1.



The stack decoder

The algorithm continues until the desired number (N) of
paths are output

The process guarantees that these are the N shortest
(lowest-cost) paths through the graph

Computational complexity: Upper bound = N!

— In practice, much much smaller

Still, it has a problem:

— Frequently its very slow
— Why?...
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Problem with the stack decoder

12:S,,

1,3,4,7: S,2.-

1,3,6: S;ac

1,3,4,5: S, 2.4.5 |

1,3,4,6: S;546

 The top of the stack is often dominated by paths that
are close to the source

— They tend to have lower costs than paths that are closer to
the sink

* The algorithm will preferentially pop these

— Effectively spending most of the time expanding shallow
paths, instead of exploring the more promising deeper ones



The A* Algorithm

e Solution: Predict the future
— Replace every score S, with S, + By
— S« is the score of a path ending at node b
— By qink IS @ guess of the lowest cost score from b to the sink

* Note that setting B, ;;,, = 0 results in the conventional stack
decoder

* Guarantee: If By ;. is a true lower bound on the the best
path score from b to the sink, the A* algorithm returns the
correct results

— |.e. the same result as the stack decoder
— Only much much faster
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The A*algorithm

B, Bg
* First: Compute the best path cost from each

node to the sink node

— Can be computed using Dijkstra’s algorithm



The A*algorithm

* Begin at the source

— The total cost of the path is the forward path cost to the
node PLUS the (guessed) best path cost to the sink

«S,=n, T B,

— Push “1:S,” into a “stack”

* “1” identifies the path, S, is its score



1: Sl )
1,2: 54,

1,3: Sy
S1,=S; e +n,
-B, + B,
B, B 51351+ €+ N3
1. Pop current shortest partial path from stack -B;+ B;
2. If: final node of partial path is sink node, output it
— If desired number (N) of outputs obtained : terminate
else: returnto 1.
else: goto 3
3. Extend partial path by expanding all edges of final node on path



-B, + B,
* NOTE: Modified Score Computation /

e Subtract B,
— Subtract previous (best guess of) lowest cost of remaining path to sink
e AddB

— Add current (best guess of) of lowest cost of remaining path from
current node to sink

node



1,2: 54,

1,3: Sy

S1,=S;+e;+n,

-B, + B,

S13=S;+e,+n;g

1. Pop current shortest partial path from stack

2. If: final node of partial path is sink node, output it

— If desired number (N) of outputs obtained : terminate
else: return to 1.

else: goto 3
3. Extend partial path by expanding all edges of final node on path

4. Push all extended paths into stack
—  Arrange stack by increasing cost: lowest cost path on top



12:S,,

B3 B6
1. Pop current shortest partial path from stack

2. If: final node of partial path is sink node, output it

— If desired number (N) of outputs obtained : terminate
else: return to 1.

else: goto 3
3. Extend partial path by expanding all edges of final node on path

4. Push all extended paths into stack
—  Arrange stack by increasing cost: lowest cost path on top

5. Returntol.



BZ B3 \
1,3: S,

1,2: 51,2 B ell
B 5 Complete path?

Q (final node 7?)

6
1. Pop current shortest partial path from stack

2. If: final node of partial path is sink node, output it

— If desired number (N) of outputs obtained : terminate
else: return to 1.

else:goto 3
3. Extend partial path by expanding all edges of final node on path

4. Push all extended paths into stack
—  Arrange stack by increasing cost: lowest cost path on top

5. Returnto 1.



B, B; \
1,3: S;5

1,2: 5, )
1,3,4: S, 5,
1,3,6: S;356
S134=513tF €5t N,
-B, + B,
B, B S136= 913t €4+ Ng
1. Pop current shortest partial path from stack -B, + B,
2. If: final node of partial path is sink node, output it

If desired number (N) of outputs obtained : terminate
else: return to 1.

else: goto 3

4.

Extend partial path by expanding all edges of final node on path
Push all extended paths into stack

—  Arrange stack by increasing cost: lowest cost path on top

5.

Return to 1.



The A* Algorithm

e The A* proceeds as the stack decoder does, with the

modification that predicted future scores are always
incorporated

* (Caveats:

— For the predicted future score do not include the score of
the first node

* To ensure that the node score is not included twice in any path
score

* E.g. B;must notinclude n,

* This can be done by explicitly subtracting out n; from the best path
score computed by Dijkstra’s algorithm
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Returning to ASR

We now apply what we have learned to
address some problems in speech recognition

N-best generation
Rescoring
Confidence estimation
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The Backpointer Table is a Tree

Id,time, t,score,word

1,1,0,s1,SIL
2,1,1,s2, APRKT
3,1,1,s3,APL
4,2,1,54,SIL
5,2,2,s5 APRKT
| 6,2,0,56,APL
7,3,6,57,SIL
8,3,2,58 APRKT
9,3,4,s9,APL

¢ Note LM probabilities now



The BackPointer Table 1s a TREE

 The backpointer table is a tree

Id,time,parent,score,word

Aeotow |

1,1, 0,s1, SIL

2,1, 1,52, APRICOT

3,1, 1, s3, APPLE >

4,2,1, s4, SIL

5,2,2,s5 APRICOT
6,2,0,56, APPLE

C 7,3,6, s7, SIL

8,3,2, s8, APRICOT

9,3,4, s9, APPLE




The BackPointer Table 1s a TREE

 The backpointer table is a tree

Id,time,parent,score,word

—/
|

1,1, O0,s1, SIL

4

2.1 1,52, APRICOT _‘
N

3,1, 1, s3, APPLE

4,2,1, s4, SIL

5,2,2,s5, APRICOT

6,2,0,s6, APPLE

i)

7,3,6, s7, SIL

8,3,2, s8 APRICOT

N

9, 3,4, s9, APPLE

J




The Backpointer Table

Id,time,parent,score,word

* Each entry in the BP table has: Erns |

— An end time L4, 66, S
. .« . . 2,1, 1,s2, APRICOT
— An implicit start time 3,1, 1, 53, APPLE
* End time of parent +1 bt Sy
. . 5, 2,2,s5, APRICOT
— A word |dent|ty 6,2,0,56, APPLE
7,3,6, s7, SIL

o A nOde score 8,3,2, s8, APRICOT
* Total score to node — total score to parent|9,3,4, 9, AppLE

* Node score may be further separated into
— Acoustic score
— Language score

— Must keep track of acoustic and language model scores
separately for this
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A different view of the BP table

Id,time,parent,score,word

1,1,0,s1,SIL

2,1,1,s2 APRKT
3,1,1,s3,APL
4,2,1,54SIL
5,2,2,s5 APRKT
6,2,0,56,APL
7,3,6,57,SIL
8,3,2,58 APRKT
9,3,4,59,APL

T=1 2 3 4 5 6 7 8 9 10 11 12 13

¢ Eachrectangle is a BP table entry, with a start time, an end time,
a word id, and a score. Some entries have no children



The BP Table as a Tree

<s> </s>

T=1 2 3 4 5 6 7 8 9 10 11 12 13

¢ Introduce the begin-utterance and end-utterance markers
¢ Note: Each node has a score
¢ Acoustic score and LM score
¢ Can be separated; Acoustic score stays at node, LM score rides incoming
edge



The BP Table as a DAG

¢ Add additional edges
¢ Only between nodes whose timestamps match up
¢ End frame of one nodes is immediately before first frame of next
¢ New edges can be assigned appropriate LM score
¢ Or may be assigned a score via reasonable heuristics



The BP Table as a DAG

<s> <[s>

\

J)

¢ “Approximate” edges
¢ Add edges between nodes if they are only “slightly” misaligned
¢ i.e. have a gap of less than X frames, or overlap by Y frames
¢ Typical values: X=Y =2,



The LATTICE

<s>

\_
J)

¢ The resulting structure is a DAG called the “LATTICE”
¢ It represents the set of all major word-sequence hypotheses that were
“considered” by the recognizer
¢ It includes the final most-probable (best match) word sequence that
was obtained, but also much more..
¢ Note: It's a probabilistic structure
¢ Each node and edge contain probability (or log prob) scores



Returning to ASR

We now apply what we have learned to
address some problems in speech recognition

N-best generation
Rescoring
Confidence estimation

We will perform all of this using the
recognition lattice
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Problem 1: N-best hypotheses

The recognizer always outputs the best-
scoring word sequence hypothesis

What is the second-best scoring hypothesis?
The third-best scoring hypothesis?
The Nth-best scoring hypothesis?

The N-best output procedure
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The Stack Decoder for N-best hypotheses

U

<s>

\_
J)

* Apply the stack decoding algorithm to obtain the
N-best paths from <s> to </s>
— Assuming single source node: <s>

— Assuming one or more sink nodes: </s>
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The A* Decoder for N-best hypotheses

\_
J)

* Generally preferable to use the A* algorithm
instead of the stack decoder

— For reasons explained earlier
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Rescoring: Using a different LM

« Common tactic:

— Perform first pass of recognition with a “simple” language
model
* E.g.abigram LM
« Much more compact graph, much more efficient search

— Find the best path through lattice using a higher-order (or
more detailed) LM

— Also called Rescoring

 Easily performed using a modification of the stack or
A* decoder
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Rescoring through A*

B, B, I
2 1,3: Sy5

1,2: S;, )
1,3,4: S, 5,

1,3,6: S 356

7z
13,47 513 "“\e@} Ny

-B, +B,

— ‘A
B, By S13,6= S13+ € * Ng

 To extend a path: B,+B, \

— Append one-step extensions to current path
— Factor In cost of one-step extensions

« The edge costs carry LM probabilities

 Refer to word history and obtain LM probabilities from n
LM

— Edge score = P(W(node) | Word history) 106




Confidence: How sure are we

* How sure can we be that the recognizer output is
correct?

— Often critical to know

— If we are not confident, we must take corrective
action

* No really robust method to compute confidence

* Confidence is often obtained as the a posteriori
probability
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Confidence as a posterior: probability

Va—
‘F

: ) </s>

<s>

\___
J)

—

* Any word in our hypothesis represents a node in the lattice

* The confidence assigned to the word is the a posteriori
probability of the node
— A number between O and 1
— 0 = sure that its wrong; 1 =» sure that its correct

» Caveat: We can be wrong when we’re sure..
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Computing a posterior: probability

<s> ilica

<[s>

\___
J)

—

* A posteriori probability:

— Total probability of all paths through node / total
probability of graph

 We already know how to compute these
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Assigning confidences

Va—
‘F

: ) </s>

<s>

\___
J)

—

* For each node representing word in hypothesis:
Compute total probability of all paths through node

— Using forward-backward algorithm given earlier

 Compute total probability of graph

— Also using the forward-backward algorithm
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Assigning confidences

<s> ilica

<[s>

\___
J)

—

* For each node representing word in hypothesis:
— Confidence = total prob of paths through node/ total
prob
 Canin fact be computed for every node in the
lattice
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Topics covered

N-best generation
Rescoring

Confidence estimation

Using:
— A*
* Combines Dijkstra’s algorithm and stack decoding

— Forward-Backward algorithm
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Additional topics

Topics remaining:

Improved confidence scoring
Acoustic rescoring
Adaptation

Neural network methods
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