LSP Carnegie Mellon
MMWMW SCHOOL OF COMPUTER SCIENCE

Design and Implementation of
Speech Recognition Systems

Spring 2013

Class 26: Exact and Inexact Search
24 Apr 2013

Representing N-gram [LMs as graphs

P(singlsing sing) * For recognition, the N-
gram LM can be
represented as a finite
state graph
— Recognition can be
performed exactly as
we would perform

recognition with
grammars

Problem: This graph can
get enormously large
— There is an arc for
every single N-gram
probability!

P(song|song song)

— Also for every single N-
1, N-2 .. 1-gram
probabilities

The representation is wasteful

In a typical N-gram LM, the vast majority of bigrams, trigrams
(and higher-order N-grams) are computed by backoff

— They are not seen in training data, however large it may be

P(w|w,w, w,) = backoff (w,w,w_)P(w|w,w,)

The backed-off probability for an N-gram is obtained from the N-1
gram!

So for N-grams computed by backoff it should be sufficient to
store only the N-1 gram in the graph

— Only have arcs for P(w | w, w,); not necessary to have explicit arcs
for P(w | w,w, w)

— This will reduce the size of the graph greatly

Negram LM as FSG: accounting for backott

* N-Gram language models with back-off can
be represented as finite state grammars

— That explicitly account for backoff!

* This also permits us to use grammar-based
recognizers to perform recognition with
Ngram LMs

* There are a few precautions to take, however

Ngram to FSG conversion: Trigram LM

\l-grams:

.2041 <UNK>
.2041 </s>
.2041 <s> -0.2730
.4260 one -0.5283
.2041 three
.4260 two -0.5283

\2-grams:

.1761 <s> one
.4771 one three
.3010 one two
.1761 three two
.3010 two one
.4771 two three

\3-grams:

.3010 <s> one two
.3010 one three two
.4771 one two one
.4771 one two three
.3010 three two one
.4771 two one three
.4771 two one two
.3010 two three two

©O O O O o o

0.0000
0.0000

-0.2730

.0000
.1761
.3010
.0000
.3010
.1761

Stepl: Add Explicit Ngrams:

¢ \l-grams:

-1.2041
-1.2041
-1.2041
-0.4260
-1.2041
-0.4260

<UNK>
</s>
<s> -0.2730
one -0.5283
three
two -0.5283

¢ \2-grams:

-0.1761
-0.4771
-0.3010
-0.1761
-0.3010
-0.4771

<s> one
one three
one two
three two
two one
two three

¢ \3-grams:

-0.3010
-0.3010
-0.4771
-0.4771
-0.3010
-0.4771
-0.4771
-0.3010

<s> one two
one three two
one two one
one two three
three two one
two one three
two one two
two three two

O OO OOoOOo

0.0000
0.0000

-0.2730

.0000
.1761
.3010
.0000
.3010
.1761

UG word BG word
history level history level
P(2]3) P(1]32)

Note: The two-word history out of
every node in the bigram word
history level is unique

Note “EPSILON” Node for Unigram Probs

Step2: Add Backofts

\l-grams:

.2041 <UNK>
.2041 </s>
.2041 <s> -0.2730
.4260 one -0.5283
.2041 three
.4260 two -0.5283

\2-grams:

.1761 <s> one
.4771 one three
.3010 one two
.1761 three two
.3010 two one
.4771 two three

\3-grams:

.3010 <s> one two
.3010 one three two
.4771 one two one
.4771 one two three
.3010 three two one
.4771 two one three
.4771 two one two
.3010 two three two

O OO OOoOOo

0.0000

0.0000 BO(3 2)

-0.2730 @ e N

.0000
.1761
.3010
.0000
.3010
.1761

BO(3)

A A

»

@ g (L) =®§ ‘ BO(1 3)
A

>

BO(1)

From any node representing a word history
“w,” (unigram) add BO arc to epsilon

— With score Backoff(w,)

From any node representing a word history “w, w,” add a BO
arc to w,,

— With score Backoff (w, wy)

Ngram to FSG conversion: FSG

= Yellow ellipse is start node
= Pink ellipse is “no gram” node (_ unk (2)
= Blue ellipses are unigram nodes f
= Gray ellipses are bigram nodes

o Score of shortest path from any node to </s>is subsumed
into the termination score for that node.

o The explicit probability link into </s> can then be removed
- Yellow star represents termination score

A Problem: Paths are Duplicated

Explicit trigram path for trigram “three two one”

Backott paths exist for explicit Ngrams

Backoff trigram path for trigram “three two one"

Delete “losing” edges

Deleted trigram link

2(7)

3 (8)

/

1(9)

o When the best backed off trigram path scores higher than the
explicit trigram path, the explicit trigram link can be removed

o Renormalization of backoff scores will be required to ensure sum(prob)=1 1 (12)

Delete “Losing” Edges

Deleted bigram link

Gk D) l

o Explicit bigram links can also be similarly removed if
backed off score is higher than explicit link score
o Backoff scores (yellow link scores) will have to be renormalized

G®
for probabilities to add to 1.)

Overall procedure for recognition with an
‘Ngram language model

* Train HMMIs for the acoustic model

* Train N-gram LM with backoff from training
data

Overall procedure for recognition with an
‘Ngram language model

* Construct the Language graph, and from it the
language HMM

— Represent the Ngram language model structure as a
compacted N-gram graph, as shown earlier

— The graph must be dynamically constructed during
recognition — it is usually too large to build statically

— Probabilities on demand: Cannot explicitly store all KN
probabilities in the graph, and comput them on the fly
e Kis the vocabulary size
— Other, more compact structures, such as FSAs can also
be used to represent the language graph

* Recognize

Types of “Language Models™

Finite state grammars

— The set of all possible word sequences is
represented as a graph

Context free grammars

— A set of context-free rules:
* Digit:=0]|1]2;
* Number = Digit | Number Digit;

— Typically converted into a finite state
graph for recognition

— Graph may be approximate

* Some CFGs cannot be represented as finite-
state Graphs; require push-down automata

N-gram language models

An Example Backotf Trigram LM

\1-grams:
-1.2041 <UNK> 0.0000
-1.2041 </s> 0.0000

-1.2041 <s> -0.2730
-0.4260 one -0.5283
-1.2041 three -0.2730
-0.4260 two -0.5283
\2-grams:

-0.1761 <s>one 0.0000
-0.4771 one three 0.1761
-0.3010 onetwo 0.3010
-0.1761 threetwo 0.0000
-0.3010 twoone 0.3010
-0.4771 two three 0.1761
\3-grams:

-0.3010 <s> one two
-0.3010 one three two
-0.4771 one two one
-0.4771 one two three
-0.3010 three two one
-0.4771 two one three
-0.4771 two one two
-0.3010 two three two

A COMPLETE TRIGRAM GRAPH
P(sing|sing sing)

<O\ 5
L) g
‘-_*.‘.-,'M 8
)" =2 o
o &)
) 2 q\" - \9\
/S‘ o N o 67
v N
S o

5
L
o

o

S |
Q

.,

P(song|song songQ)

A “Reduced” Trigram Graph

\1-grams:
-1.2041 <UNK> 0.0000
-1.2041 </s> 0.0000
-1.2041 <s> -0.2730
-0.4260 one -0.5283
-1.2041 three -0.2730
-0.4260 two -0.5283
\2-grams:

-0.1761 <s> one 0.0000
-0.4771 one three 0.1761
-0.3010 onetwo 0.3010
-0.1761 three two 0.0000
-0.3010 two one 0.3010
-0.4771 two three 0.1761
\3-grams:

-0.3010 <s> one two
-0.3010 one three two
-0.4771 one two one
-0.4771 one two three
-0.3010 three two one
-0.4771 two one three)
-0.4771 two one two

-0.3010 two three two

Ngrams: Can we do better

 Even reduced graphs can get very large
— Rarely directly used for recognition

* Alternate strategies must be employed
— Lextrees

* For low-order Ngrams only

— Approximate decoding strategies
— Lextrees + approximate decoding strategies

* Minimization strategies

— WEFSTs: Using techniques from finite state automata
theory

A Unigram Graph

\ P(Dear) ’ ‘

e Just a set of parallel word models with a loopback

* The ingoing edge into each word carries its LM
probability

A Unigram Graph with words built

from phonemes

o)
P(apricot _

<

P(Dea r)

* Composing Word models from phoneme models

* Each rectangle is actually an HMM. The entire graph
is a large HMM

A Unigram Lextree

o)

* Eliminate redundancy in the graph

 But where do word probabilities get introduced?
— The identity of the word is not evident at entry!

A Unigram Lextree with trailing
probabilities

P(apricot)

* Introduce word probabilities on the exit arcs
— The word identity is evident at that point

A Unigram lLextree with spread
probabilities

P(apricot) + P(apple) A\
N o\o
P(apple)

P(apple)+ P(apricot)‘q

m,-

P(apricot) , s
P(apple)+ P(apricg

P(pear)+P(plum)

- =\
——
p—
———__—
-
—
- -

P(pear) _

P(pear)+ P(plum)|

4
P(plum)

P(pear)+P(plum)

» Better still: Spread the probabilities

— Any arc that first identifies a subset of words carries the
conditional probability of that subset

A Bigram Graph

P(apple | apple)

P(apple | apricot)

P(apricot | apple)

P(apricot | apricot)

e Explicit connection from every word to every word
— Connections carry bigram probabilities

A Bigram Graph: Adding silence

/)_\\

e

* Addition of looping silence is non-trivial
— What is the probability on the outgoing edges from silence?
* We do not have probabilities for P(word | silence), only P(word|word)

* |If asilence occurs between two words, we use the word before the
silence as context

A Bigram Graph: Proper insertion of
silences

P(apple | apple)

P(apple | apricot)

P(apricot | apple)

P(apricot | apricot)

An explicit silence model at the end of every word
— We get an enormous number of copies of the silence model!

What about Lextrees

P(apple | apple)

NG V00 [0 0 [SOV
\45 ap
© P(apple | apricot) 'O/e)
P(apricot | apple) 7.
I
\
\
\
\
\
\

P(apr/'COt =)

P(apricot | apricot) P(</s> | appricot)

e Can this be collapsed to a lextree?

Probabilities on lextrees

P(?| apple)

e

P(?| apricot)

 Word identities are not known on entry

— Only on word exit

Probabilities on lextrees

P(apple|apple)
,,/ P(apple|apple)+ P(apricot | apple)
OR :

4
’
’

P(apple| apple)+P(apricot|apple) 7 P(apple| apricot) o
’ P(apple| apricot)+ P(apricot | apricot)

/
/4
/

I
\

P(apple| apricot)+P(apricot|apricot)

 Word identities are not known on entry
— Only on word exit
* Word probabilities cannot be smeared
— Both word histories lead into the same node
— Uncertain which probability terms to use on inner connections

Correct Lextrees

P(apple|apricot)

P(apricot|apple)

P(apricot|apricot)

» Each edge carries the bigram probability of the exited word

— This 1s different from the “flat” structure where the edges carried probabilities of words to be
entered

— All “Apple” exits enter lextree 1, all “apricot” exits enter lextree 2

« This graph is not complete: it ignores the first word in a sentence

Correct full lextrees

P(</s>|aprocot)*P(apricot|apple)

P(</s>|apple)R(apple|apple)

AN

P(apple|<s>)

P(</s>|apple)*
P(apple|apricot)

P(apricot|<s>)

« The word entry bigrams need their own lextree! P(</s>|apricot)*p(apricot | apricot)

— Since neither of the second-level lextrees can represent a sentence-beginning context
* Lextree 1 represents the “Apple” context (only exits from the word “apple” enter this lextree
* Lextree 2 is the “apricot” context

* Why do transitions into the end of sentence have products of two probability
terms?

Correct full lextrees with silence

SIL

e

{lSIL

SIL

* Fortunately, adding silence doesn’t complicate this

 Add alooping silence at the beginning of each lextree

too much

— And one at the sentence terminator

Correct Structures are Limiting

The “correct” flat N-gram structure can get very large
— D+ D?+..+ DNt word HMMs are required in the larger
“Language” HMM
Even the reduced N-gram structure can be very large
— Reduced structures are not exact

® Multiple paths exist for each N-gram

— Reduced structures are nevertheless used very effectively by
WEST-based strategies

Lextrees result in significant compression for Unigram LMs

But for N-gram LMs “correct” Lextree-based graphs are
much larger than “flat” graphs

— Need D + D2 +.. + DN1 |extrees!!

Approximate Search Strategies

Approximate search strategies are not guaranteed to result
in the best recognition

— Although, in practice they often approach the optimal
recognition

Efficiency is obtained by dynamically modifying graph
parameters

— |.e. language probabilities in the language HMM
This is typically done by utilizing word histories

— From a backpointer table

The resulting improvement in efficiency can be very large

Approximate search with a Unigram
| .extree

e

e Utilize the above lextree as the basic HMM structure
— Note — no language model probabilities are loaded on the
lextree

* These will be imposed dynamically during search

— In practice unigram probabilities may be factored into the
lextree and factored out during search

* We will ignore this option in the following explanation

Approximate search with a Unigram
| .extree

 We will use the simplified figure above in the following
explanation

— AEP is the concatenation of AE and P
— AXL is the concatenation of AX and L
— RAKT is the concatenation of RAXKAA and T

* Will not explicitly show silence models

Approximate search with a Unigram

| .extree

- FE——mu

)

* A Linear Representation that is useful to draw a trellis
— Note: Each box is actually an HMM (representing a

sequence of phonemes)

— For simplicity we will assume each box has only one state

Approximate search Trellis

/ /‘ P /‘

* A normal unigram trellis, but with no LM
probabilities at word transitions

Id,time,parent,score,word

AEproximate search Tre_

/‘ /K /‘

o
N R

* A normal unigram trellis, but with no LM
probabilities at word transitions

Id,time,parent,score,word

AEproximate search Tre_

AWAVAWA
®
.

o) P ‘ ‘ V

« Search follows usual rules except that at word transitions we
look up the word history to apply LM probabilities

Id,time,parent,score,word

Approximate search Trellis

N AWAVAWA
x, XN ,¢

* Search follows usual rules except that at word transitions we
look up the word history to apply LM probabilities

Id,time,parent,score,word

AEproximate search Trellis Lotos]

We will actually use log(LMPROB) as edge score during search

P(apricot|<s>)

P(apple|<s>)

* Search follows usual rules except that at word transitions we
look up the word history to apply LM probabilities

Id,time,parent,score,word

AEproximate search Trellis Lotos]

N AAVAVA
e

* Search follows usual rules except that at word transitions we
look up the word history to apply LM probabilities

ApprOXimate S earch Id, time, parent,score,word

* Search follows usual rules except that at word transitions we
look up the word history to apply LM probabilities

ApprOXimate S earch Id, time, parent,score,word

* Search follows usual rules except that at word transitions we
look up the word history to apply LM probabilities

ApprOXimate S earCh Id, time, parent,score,word

())‘

/

AA
: -~

* Search follows usual rules except that at word transitions we
look up the word history to apply LM probabilities

ApprOXimate S earch Id, time, parent,score,word

* Search follows usual rules except that at word transitions we
look up the word history to apply LM probabilities

ApprOXimate S earch Id, time, parent,score,word

Trellis c e

We will actually use log(LMPROB) as edge score during search

P(apricot|<s>)
I

A
®
)

‘)‘
/ ® I
@ | ‘ V
P(apple|<s>)

* Search follows usual rules except that at word transitions we
look up the word history to apply LM probabilities

ApprOXimate S earch Id, time, parent,score,word

* Search follows usual rules except that at word transitions we
look up the word history to apply LM probabilities

ApprOXimate S earCh Id, time, parent,score,word

Trellis

o o
o
4 ®
e

* Search follows usual rules except that at word transitions we
look up the word history to apply LM probabilities

APPrOXimate S earCh Id, time, parent,score,word

Trellis

S
Pk //
I I I I |

* Search follows usual rules except that at word transitions we
look up the word history to apply LM probabilities

APPrOXimate S earCh Id, time, parent,score,word

Trellis

A
Pk //
I I I I |

* Search follows usual rules except that at word transitions we
look up the word history to apply LM probabilities

ApprOXimate S earCh Id, time, parent,score,word

Trellis

* Search follows usual rules except that at word transitions we
look up the word history to apply LM probabilities

ApprOXimate S earCh Id, time, parent,score,word

Trellis

P(apricot|apple)

P(apple|<s>)

* The transition out of “Apricot” carries the probability P(Apricot|Apple)
because the parent of the current state is the word “apple”

e This information is retrieved from the backpointer table

ApprOXimate S earCh Id, time, parent,score,word

[J ® ®) "

o o
T 1 0

* Search rules do not change — the best
incoming entry is retained

APPrOXimate S earCh Id, time, parent,score,word

Trellis
® ® ®
® ® ®

* Search rules do not change — the best
incoming entry is retained

APPrOXimate S earCh Id, time, parent,score,word

Trellis
® ® ®
® ® ®

* Search rules do not change — the best
incoming entry is retained

APPrOXimate S earch Id,time, parent, score,word

Trellis
® ® ®
® ® ®

* Search rules do not change — the best
incoming entry is retained

APPrOXimate S earCh Id, time, parent,score,word

Trellis

P(apricot|apple)

P(apple |apricot)

* Note the conditioning word in the bigram
probabilities applied

APPrOXimate S eal‘ch Id, time, parent,score,word

Trellis

* The winner remains as before

ApprOXimate S eal‘ch Id, time, parent,score,word

Trellis

* The winner remains as before

ApprOXimate S earch Id, time, parent,score,word

Trellis

e Lets follow this to the end

ApprOXimate S earch Id, time, parent,score,word

Trellis
® ® ® ®
® ® ®
® ®
e

e Lets follow this to the end

ApprOXimate S earch Id, time, parent,score,word

Trellis

e Lets follow this to the end

Id,time,parent,score,word

P(apricot|appricot)*P(</s>|apricot)

P(apple|appricot)*P(</s>|apple)

* Note the probabilities being applied to the
final transition into sentence ending!

Approximate structures with lextrees

Can use trigram probabilities instead of bigrams without modifying
search strategy

— Determine previous TWO words and apply appropriate LM trigram
probability during search

— Canin fact handle ANY left-to-right language model

The approximate structure shown earlier is suboptimal
— Although highly popular, particularly for embedded systems

A better approximation is obtained using multiple lextrees
— Typically 3-5 lextrees

— The distinction between the lextrees is in the time of entry: incoming arcs
into the j-th (of K) lextrees only activate if T%K = j
* i.e. each lextree can be entered only once every K frames
* Other similar heuristics may be applied

A still better approximation is obtained using a flat bigram search
structure

Approximate decode with tlat bigram
structure

Ve N

Il
B

——{amcor_F

* A better (but more complex) approximate search uses the flat bigram
structure shown above

e

— Note the manner in which silence is inserted

* Once again, no LM probabilities are introduced at this stage

A closer look at the flat bigram

* Not showing silence above to keep it simple

— But in reality, silence will be included
— Note: No LM probabilities included

 We take no advantage of the fact that phonemes are shared, however
— We want to be able to determine word identity at the entry to a word

— In the following slides we will not show the phonetic breakup of words to keep
figures simple

The flat bigram structure

Ve I

* Inthe following slides we will assume each word has only one state to simplify illustration

Recognition with tlat bigram structure

A
QA AY

* The trellis is composed as usual

— But no cross-word language-probabilities are introduced
* Note: In this form of trellis the non-emitting state at word beginning may be superfluous

Recognition with tlat bigram structure

P(APPLE | <s>)

¢ Bigram probabilities conditioned on start of sentence are applied at the
beginning
¢ Entries to silence carry silence penalty

Recognition with tlat bigram structure

QAN A

¢ Word ending states move into the backpointer table

Recognition with tlat bigram structure

Id,time, t re,word

"
REERa
| |

¢ Word ending states move into the backpointer table

Recognition with flat bigram structure

Some arcs have bigram probs, others have trigram probs, and
yet others have none
For search we actually use log(LMPROB) as edge score

‘ P(APPLE | <s>) Id,time,parent,score,word

1,1,0,51,SIL

2,1,1,s2, APRKT

" 3,1,1,53,APL
‘ P(APPLE | <s> APRICOT)
\ 7 \VARA
"\ P(APPLE | <s> APPLE)
€\
N

»

¢ Note the different LM probability terms applied to the arcs
¢ Assuming trigram LM
¢ The appropriate history to use for the LM probability is obtained from the BPtable

Recognition with tlat bigram structure

Some arcs have bigram probs, others have trigram probs, and
yet others have none
For search we actually use log(LMPROB) as edge score

P(APRICOT | <s>) Id,time,parent,score,word

1,1,0,51,SIL

P(APRICOT | <s> APRICOT) ’ 2,1,1,52 APRKT
‘ ‘ 3,1,1,s3,APL
P(APRICOT | <s> APPLE) "\
7 W

¢ Note the different LM probability terms applied to the arcs
¢ Assuming trigram LM
¢ The appropriate history to use for the LM probability is obtained from the BPtable

Recognition with flat bigram structure

P(SIL)

N/ S =
P(SIL) 1,1,0,s1,SIL
/%\p(s.u "* Q& S
\

¢ All cross-word arcs into SILENCE carry the silence penalty
¢ Self-transitions within the silence will only carry the self-transition
probability for the states of the Silence model

Recognition with flat bigram structure

Id,time, t,score,word

1,1,0,51,SIL
2,1,1,s2, APRKT
3,1,1,s3 APL

¢ The actual computation evaluates all of these states in the same
timestep

Recognition with tlat bigram structure

Id,time, t,score,word

I o

¢ The actual computation evaluates all of these states in the same
timestep

Recognition with tlat bigram structure

«\ «\

Id,time, t,score,word

1,1,0,51,SIL

2,1,1,s2, APRKT

3,1,1,s3,APL

¢ The actual computation evaluates all of these states in the same

timestep

Recognition with tlat bigram structure

Id,time, t,score,word

1,1,0,51,SIL

LA

¢ Word ending states move into the BP table

Recognition with tlat bigram structure

Id,time, t,score,word

1,1,0,51,SIL

e

4,2,1,54,SIL

5,2,2,s5 APRKT

¢ Word ending states move into the BP table

Cross-word Pruning

We can apply a second pruning threshold locally to all entries added to
the BP table at a given time

This is the “new-word beam”

— This is different from the state-level beam applied across all active states at
a given time

— This is only applied to new word terminations

* A similar new-word beam may also be applied to the approximate lextree and to
correct flat and lextree graphs

In other words, there are TWO different beams we will apply
— A state-level beam to prune poorly-scoring states
— A word-level beam to prune poorly-scoring words

Word beams are typically narrower than state beams

Recognition with tlat bigram structure

Id,time, t,score,word

1,1,0,51,SIL

A

‘ 6,2,0,56,APL \

¢ Pruning the word exits

Recognition with flat bigram structure

ﬁ P(SIL)
()

P(SIL)
‘ P(APRICOT | <s>)
X M 3,1,1,s3,APL
4,2,1,54,SIL
/\

N P(APRICOT |<s> APPLE)

/

P(APPLE |<s> APPLE)

¢ Note the different LM probabilities applied

Id,time, t,score,word

1,1,0,51,SIL
2,1,1,s2, APRKT

‘ 6,2,0,56,APL \

P(APPLE | <s>)
/ ¢

Recognition with tlat bigram structure

Id,time, t,score,word

(1,1,0,s1SIL
2,1.1,52 APRKT
“ 3,1,1,53, APL

[

‘ 6,2,0,56,APL \

& Select the “winner”

Y

Recognition with tlat bigram structure

Id,time, t,score,word

@ (
VAR
B

AL

‘ 6,2,0,56,APL \

¢ Note the different LM probabilities applied

Recognition with tlat bigram structure

Id,time, t,score,word

(] (] (
1,1,0,51,5IL
‘ ‘ 211,52 APRKT
‘ \ 3,1,1,53,APL
S A§ 4,2,1,54,SIL
’\ ’(‘ 6,2,0,56,APL \
(]

¢ As before, word ending states move into the BP table

Recognition with tlat bigram structure

/

\/

V% ‘\

e

¢ As before, word ending states move into the BP table

Id,time, t,score,word

1,1,0,51,SIL
2,1,1,s2, APRKT

3,1,1,s3 APL

4,2,1,54,SIL

| 6.20,56,APL

7,3,6,57,SIL
8,3.2,s8 APRKT
9,3,4,59,APL

Recognition with flat bigram structure

Id,time, t,score,word

1,1,0,51,SIL
2,1,1,s2, APRKT

3,1,1,s3 APL

4,2,1,54,SIL

| 62,0,56,APL
7,3,6,57,SIL
8,3,2,58 APRKT

¢ As before, word ending states move into the BP table
¢ And are pruned

Recognition with flat bigram structure

P(SIL)

\ 1\

V|

P(SIL)

¢ Note LM probabilities now

Id,time,parent,score,word

1,1,0,51,SIL
2,1,1,s2, APRKT

3,1,1,s3 APL

4,2,1,54,SIL

| 62,0,56,APL
7,3,6,57,SIL
8,3,2,58 APRKT

Recognition with flat bigram structure

P(APRICOT |<s> APPLE)

¢ Note LM probabilities now

Id,time, t,score,word

1,1,0,51,SIL
2,1,1,s2, APRKT
3,1,1,s3 APL

4,2,1,54,SIL

| 62,0,56,APL

7,3,6,57,SIL

8 3.2, 58 APRKT

P(APRICOT | APRICOT APRICOT)

Recognition with flat bigram structure

P(APPLE |<s> APPLE)

¢ Note LM probabilities now

Id,time, t,score,word

1,1,0,51,SIL
2,1,1,s2, APRKT
3,1,1,s3 APL

4,2,1,54,SIL

| 62,0,56,APL

7,3,6,57,SIL

8 3.2, 58 APRKT

P(APPLE | APRICOT APRICOT)

Recognition with tlat bigram structure

. . 5 Id,time, t,score,word
> >

1,1,0,51,SIL
2,1,1,s2, APRKT
3,1,1,s3 APL

4,2,1,54,SIL

| 62,0,56,APL
7,3,6,57,SIL
8,3,2,58 APRKT

¢ Note LM probabilities now

Recognition with flat bigram structure

Id,time, t,score,word

1,1,0,51,SIL
2,1,1,s2, APRKT
3,1,1,s3 APL

4,2,1,54,SIL

| 62,0,56,APL
7,3,6,57,SIL
8,3,2,58 APRKT

¢ Note LM probabilities now

Recognition with flat bigram structure

Id,time, t,score,word

1,1,0,51,SIL
2,1,1,s2, APRKT
3,1,1,s3 APL

\ 42 1545IL

| 62,0,56,APL
7,3,6,57,SIL
8,3,2,58 APRKT

¢ Note LM probabilities now

Recognition with tlat bigram structure

¢ These word exits will end up in the BP table (not shown)

Recognition with tlat bigram structure

¢ These word exits will end up in the BP table (not shown)

Recognition with tlat bigram structure

P(</S> | Apricot Apricot)

-

P(</S> | Apricot Apple)

¢ Note Sentence Ending LM Probabilities Used
¢ Note also that multiple hypotheses represent the same word sequence
¢ Varying only in the location of silences and word boundaries

Additional Issues

Several topics left uncovered

Multi-pass search strategy:

— The BP table is actually a “lattice”
e A graph of words

— Common strategy: compute a lattice using a bigram LM; use that as
a grammar/graph for recognition using higher-order N-gram LMs

N-best hypotheses generation

— How to search the word graph to generate more than one
hypotheses

Confidence: How to assign a “confidence” score to a
hypothesis

— How much we believe the recognizer’s output

