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Topics for today 

• The problem with word models 

• Subword units 

• Phonetic networks 

• What is a good subword unit 

• The effect of context 

• Building word graphs 

• Simplifying decoding structures 

• Some speed-up issues 

• Summary 
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What does a Recognizer do 

• Automatic speech recognition systems attempt to learn and 

identify units of sound in an utterance 

 

• The “units” may be anything 

– They could be entire sentences, words or something finer 
 

 

• To recognize a unit when it is spoken the system must learn 

models for it from training examples 

– We cover training in a later lecture 
 

• The recognizer can recognize any of the units it has models 

for 
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The problem with word models 

• Word model based recognition: 

– Obtain a “template” or “model” for every word you want to recognize 

• And maybe for garbage 

– Recognize any given input data as being one of the known words 
 

• Problem: We need to train models for every word we wish to 

recognize 

– E.g., if we have trained models for words “zero, one, .. nine”, and wish 

to add “oh” to the set, we must now learn a model for “oh” 
 

• Training needs data 

– We can only learn models for words for which we have training data 

available 
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• Zipf’s law: The number of events that occur often is small, 

but the number of events that occur very rarely is very large. 

– E.g. you see a lot of dogs every day. There is one species of animal 

you see very often. 

– There are thousands of species of other animals you don’t see except 

in a zoo. i.e. there are a very large number of species which you don’t 

see often. 
 

 

• If n represents the number of times an event occurs in a unit 

interval, the number of events that occur n times per unit time 

is proportional to 1/na, where a is greater than 1 

– a > 1 
 

Zipf ’s Law 
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Zipf ’s Law 
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• The following are examples of the most frequent and the least frequent words 

in 1.5 million words of broadcast news representing 70 of hours of speech 

– THE:  81900 

– AND: 38000 

– A: 34200 

– TO: 31900 

– .. 

– ADVIL: 1 

– ZOOLOGY: 1 
 

• Some words occur more than 10000 times (very frequent) 

– There are only a few such words: 16 in all 
 

• Others occur only once or twice – 14900 words in all 

– Almost 50% of the vocabulary of this corpus 
 

• The variation in number follows Zipf’s law: there are a small number of 

frequent words, and a very large number of rare words 

– Unfortunately, the rare words are often the most important ones – the ones that 

carry the most information 

Zipf ’s Law also applies to Speech and Text 
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• If we trained HMMs for individual words, most words 

would be trained on a small number (1-2) of instances 

(Zipf’s law strikes) 

– The HMMs for these words would be poorly trained 

– The problem becomes more serious as the vocabulary size 

increases 
 

• No HMMs can be trained for words that are never seen in 

the training corpus 

 

• Direct training of word models is not an effective approach 

for large vocabulary speech recognition 

Word models for Large Vocabularies 
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• Observation: Words in any language are formed by 

sequentially uttering a set of sounds 
 

• The set of  these sounds is small for any language 
 

• We solve the problem by decomposing words into sub-

word units 

– Units that are smaller than words, that must be concatenated to 

form words 

– Typically phonemes 
 

• Any word in the language can be defined in terms of these 

units 

Sub-word Units 
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• The mapping from words to phoneme sequences must be specified 

– Usually specified through a mapping table called a dictionary 

Eight   ey   t 

Four    f    ow   r 

One    w    ax   n 

Zero    z    iy     r   ow 

Five     f    ay    v 

Seven  s   eh   v   ax  n 

• Every word in the training corpus is converted to a sequence of 
phonemes 

o The transcripts for the training data effectively become sequences of 
phonemes 

• HMMs are trained for the phonemes 

Mapping table (dictionary) 

Phonemes and Dictionaries 
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• Distribution of phonemes in the BN corpus 

Histogram of the number of occurrences of the 39 phonemes in  
1.5 million words of Broadcast News 

• There are far fewer “rare” phonemes, than words 

o This happens because the probability mass is distributed among fewer 
unique events 

• If we train HMMs for phonemes instead of words, we will have 
enough data to train all HMMs 

Beating Zipf ’s Law 
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• Recognition will still be performed over words 

– The Bayes’ equation for speech recognition remains unmodified 
 

• The HMMs for words are constructed by concatenating the HMMs 

for the individual phonemes within the word 

– In order to do this we need a phonetic breakup of words 

– This is provided by the dictionary 

– Since the component phoneme HMMs are well trained, the constructed 

word HMMs will also be well trained, even if the words are very rare in the 

training data 
 

• This procedure has the advantage that we can now create word 

HMMs for words that were never seen in the acoustic model training 

data 

– We only need to know their pronunciation 

– Even the HMMs for these unseen (new) words will be well trained 

But we want to recognize Words 
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Decoder 
Identifies sound units based  

on learned characteristics 

                      Eight      Eight        Four            One          Zero        Five     Seven  

Trainer 
Learns characteristics 

of sound units 

Spoken 

Recognized 

Insufficient data to train 
every word. Words not 
seen in training not 
recognized 

Word as unit  

       Eight              Four     Five        Eight       One  

Word-based Recognition 

     Enter                      Four  Five    Eight    Two   One  
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Decoder 
Identifies sound units based  

on learned characteristics 

                      Eight      Eight        Four            One          Zero        Five     Seven  

Trainer 
Learns characteristics 

of sound units 

Map words into phoneme 
sequences 

Phoneme based recognition 

Dictionary 
Eight:   ey t 
Four:    f ow r 
One:    w a n 
Zero:    z iy r ow 
Five:     f ay v 
Seven: s e v e n 

                      ey   t        ey   t      f  ow    r              w  a n       z iy  r   o   f   ay  v    s  e v e n  

                      Eight      Eight        Four                One             Zero             Five     Seven  

     Enter                      Four  Five    Eight    Two   One  
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Decoder 
Identifies sound units based  

on learned characteristics 

                      Eight      Eight        Four            One          Zero        Five     Seven  

Trainer 
Learns characteristics 

of sound units 

Map words into phoneme 
sequences 
and learn models for 
phonemes 
New words can be added 
to the dictionary 

Dictionary 
Eight:   ey t 
Four:    f ow r 
One:    w a n 
Zero:    z iy r ow 
Five:     f ay v 
Seven: s e v e n 
Enter: e n t e r 
two:    t uw 

Phoneme based recognition 

                      ey   t        ey   t      f  ow    r              w  a n       z iy  r   o   f   ay  v    s  e v e n  

                      Eight      Eight        Four                One             Zero             Five     Seven  

     Enter                      Four  Five    Eight    Two   One  
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     Enter                  Four  Five      Eight   Two   One  

Decoder 
Identifies sound units based  

on learned characteristics 

                      Eight      Eight        Four            One          Zero        Five     Seven  

Trainer 
Learns characteristics 

of sound units 

Map words into phoneme 
sequences 
and learn models for 
phonemes 
New words can be added 
to the dictionary 
AND RECOGNIZED 

Dictionary 
Eight:   ey t 
Four:    f ow r 
One:    w a n 
Zero:    z iy r ow 
Five:     f ay v 
Seven: s e v e n 
Enter: e n t e r 
two:    t uw 

     Enter                      Four  Five    Eight    Two   One  

Phoneme based recognition 

                      ey   t        ey   t      f  ow    r              w  a n       z iy  r   o   f   ay  v    s  e v e n  

                      Eight      Eight        Four                One             Zero             Five     Seven  
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Words vs. Phonemes 

ey t     ey t     f  ow  r     w a n    z iy r ow     f  ay  v    s e v e n  

More training examples = better statistical estimates of model (HMM) parameters 

 

The difference between training instances/unit for phonemes and words increases 

dramatically as the training data and vocabulary increase 

Unit = whole word  

Average training examples per unit = 7/6 =~ 1.17  

Unit = sub-word 

Average training examples per unit = 22/14 =~ 1.57  

                      Eight      Eight        Four            One          Zero        Five     Seven  
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How do we define phonemes? 

• The choice of phoneme set is not obvious 
– Many different variants even for English 

 

• Phonemes should be different from one another, 
otherwise training data can get diluted 

– Consider the following (hypothetical) example: 

– Two phonemes “AX” and “AH” that sound nearly the 
same 
• If during training we observed 5 instances of “AX” and 5 of 

“AH” 

• There might be insufficient data to train either of them 
properly 

• However, if both sounds were represented by a common 
symbol “A”, we would have 10 training instances! 
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Defining Phonemes 

• They should be significantly different from one another to avoid 

inconsistent labelling 

– E.g. “AX” and “AH” are similar but not identical 

 

– ONE:   W AH N 

• AH is clearly spoken 

– BUTTER:  B AH T AX R 

• The AH in BUTTER is sometimes spoken as AH (clearly enunciated), and at 

other times it is very short “B AH T AX R” 

• The entire range of pronunciations from “AX” to “AH” may be observed 

– Not possible to make clear distinctions between instances of B AX T and B AH 

T 

• Training on many instances of BUTTER can result in AH models that are 

very close to that of AX! 

– Corrupting the model for ONE! 
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Defining a Phoneme 
•   Other inconsistencies are possible 

– Diphthongs are sounds that begin as one vowel and end as another, e.g. the 

sound “AY” in “MY” 

– Must diphthongs be treated as pairs of vowels or as a single unit? 

– An example 

“AAEE” “MISER” 

“AH” “IY” “AY” 

o Is the sound in Miser the sequence of sounds “AH IY”, or is it the diphthong 
“AY” 
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Defining a Phoneme 
•   Other inconsistencies are possible 

– Diphthongs are sounds that begin as one vowel and end as another, e.g. the 

sound “AY” in “MY” 

– Must diphthongs be treated as p of vowels or as a single unit? 

– An example 

“AAEE” “MISER” 

“AH” “IY” “AY” 

o Is the sound in Miser the sequence of sounds “AH IY”, or is it the diphthong 
“AY” 

Some differences in transition structure 
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A Rule of  Thumb 

• If compound sounds occur frequently and have smooth 

transitions from one phoneme to the other, the compound 

sound can be single sound 

– Diphthongs have a smooth transition from one phoneme to the next 

• Some languages like Spanish have no diphthongs – they are always 

sequences of phonemes occurring across syllable boundaries with no 

guaranteed smooth transitions between the two 
 

• Diphthongs: AI, EY, OY (English), UA (French) etc. 

– Different languages have different sets of diphthongs 
 

• Stop sounds have multiple components that go together 

– A closure, followed by burst, followed by frication (in most cases) 
 

• Some languages have triphthongs 
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Phoneme Sets 

• Conventional Phoneme Set for English: 

– Vowels:  AH, AX, AO, IH, IY, UH, UW etc. 

– Diphthongs:  AI, EY, AW, OY, UA etc. 

– Nasals:  N, M, NG 

– Stops:    K, G, T, D, TH, DH, P, B 

– Fricatives and Affricates:  F, HH, CH, JH, S, Z, ZH etc. 
 

• Different groups tend to use a different set of phonemes 

– Varying in sizes between 39 and 50! 
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Recognition with Subword Units 

• Word based recognition Review: 

 

 

 

 

 

 

 

 

– Create a large “grammar” HMM using the HMMs for individual words 

– Find the best state sequence through the grammar HMM 

– This also gives us the best word sequence automatically 

P(red) 

P(blue) 

P(green) 
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Recognition with Phonemes 

• The phonemes are only meant to enable better learning 

of templates 

– HMM or DTW models 

 

• We still recognize words 

• The models for words are composed from the models 

for the subword units 

• The HMMs for individual words are connected to form 

the Grammar HMM 

• The best word sequence is found by Viterbi decoding 
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• Each phoneme is modeled by an HMM 

• Word HMMs are constructed by concatenating HMMs of phonemes 

• Composing word HMMs with phoneme units does not increase the 

complexity the grammar/language HMM 

HMM for /R/ HMM for /AO/ 

Composed HMM for ROCK 

Example: 

Word                       Phones                   

Rock                        R  AO  K                 

HMM for /K/ 

Recognition with phonemes 
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Rock 

Dog 

Star 

HMM for /R/ HMM for /AO/ HMM for /K/ 

HMM for /D/ HMM for /AO/ HMM for /G/ 

HMM for /S/ HMM for /T/ HMM for /AA/ HMM for /R/ 

A simple grammar that recognizes either the phrase 
“DOG STAR” or “ROCK STAR” 

Recognition with phonemes 

Thick lines represent connections between phonemes 
and connections between words 
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START END 

ODD 

EVEN 

P(Odd | Odd) 

P(Even | Odd) 

HMM for /AO/ HMM for /D/ 

HMM for /IY/ HMM for /V/ HMM for /EH/ HMM for /N/ 

END START 

Recognizing Odd vs. Even 
This word-level FSG 

Translates to this 
HMM structure 
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Building Word Model Networks 

• Procedure for building word model networks: 
 

1. Compose word graph from grammar 

2. For each word in the graph, derive the pronunciation 

from a pronunciation dictionary 

3. Compose HMM for the word from the HMMs for the 

phonemes 

4. Replace each edge representing a word in the graph by 

the HMM for that word 

5. Decode 
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Composing a Word HMM 

• Words are linear sequences of phonemes 
 

• To form the HMM for a word, the HMMs for the 

phonemes must be linked into a larger HMM 
 

• Two mechanisms: 

– Explicitly maintain a non-emitting state between the 

HMMs for the phonemes 

• Computationally efficient, but complicates time-synchronous 

search 

– Expand the links out to form a sequence of emitting-only 

states 
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Linking Phonemes via Non-emitting State 

• For every phoneme any state sequence can terminate in any state s with a 

probability Ps (phoneme) (which can be 0).  

– This is often represented as a transition into an absorbing state with probability Ps 

(phoneme) 
 

 

 

 

 

 

 

• For every phoneme any state sequence can begin at any state s with a 

probability ps (phoneme) (which can be 0) 

– This can be represented as transitions from a generating state with probability ps 

(phoneme) 

 

 

 

 

– Often we only permit the first state of the HMM to have non-zero ps. In this case 

the generating state may be omitted 

Absorbing state 

Generating state 
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Linking Phonemes via Non-emitting State 

• To link two phonemes, we create a new “non-emitting” 
state that represents both the absorbing state of the first 
phoneme and the generating state of the second 
phoneme 

Phoneme 1 Phoneme 2 

Phoneme 1 Phoneme 1 

Non-emitting state 
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Linking Phonemes Directly 
• Transitions into absorbing states of the first phoneme are factored into 

the transitions from the generating state of the second 
 

• Let tph1(s,A) be transition probabilities from any state s to the absorbing 

state of phoneme 1 
 

• Let tph2(G,s) be transition probabilities from the generating state of 

phoneme 2 into any state s 
 

• The joint HMM will now have direct transitions from state si of 

phoneme 1 to state sj of phoneme 2 with probabilities  

 

      tph1,ph2(si, sj) = tph1(si,A) tph2(G,sj)  

 

– Every combination of si and sj must be considered when making this 

connection 
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Linking Phonemes Directly 

• Colour codes to show the probabilities of each transition 

1 2 3 a x g 

Phoneme 1 Phoneme 2 

Phoneme 1 Phoneme 1 

y z 

1 2 3 x z y 

t2atgx t3atgx t2atgy t3atgy 
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The problem of  pronunciation 

• There are often multiple ways of pronouncing a word. 
– Sometimes these pronunciation differences are semantically 

meaningful: 

• READ   :    R IY D            (Did you read the book) 

• READ   :    R EH D          (Yes I read the book) 

– At other times they are not 

• AN  :     AX N                  (That’s an apple) 

• AN  :     AE N                  (An apple) 
 

• These are typically identified in a dictionary through markers 
– READ(1)   :  R IY D 

– READ(2)   :  R EH D 
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Handling multiple pronunciations 

• While building a “grammar” HMM, every pronunciation of 
the word must be separately considered 
– Each instance of a word in the grammar will be represented by 

multiple parallel paths in the finite state graph, one for each 
pronunciation 

 

– E.g.   (I | WE) (READ | WRITE) (BOOKS | PAPERS) 

 

 

 

 

 

 

– If edges have probabilities, every copy of the word will carry the 
same probability 

WE 

I 

READ 

WRITE 

BOOKS 

PAPERS 

WE 

I 

READ(2) 

WRITE 

BOOKS 

PAPERS 

READ(1) 
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Handling multiple pronunciations 

• Multiple word pronunciations may be more compactly 
represented by graphs 

– READ : R (EH | IY) D 

– AN : (AX | AE) N 
 

• In this case there is no need to create multiple parallel 
edges in the grammar to represent multiple 
pronunciations 

 

• However, the HMM for the word itself becomes more 
complex 
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HMM for word with multiple prons. 

• The HMM for the word must represent the pronunciation 
graph 
– HMM construction must consider branching into / merging from 

multiple phonemes 
 

• Once again, the HMM could be constructed either via non-
emitting states or by direct linkage 

 

• The HMM for READ :  R (EH | IY ) D 
– HMM FOR R, HMM for EH, HMM for IY, HMM for D 

– HMM for READ 

– Using non-emitting states 
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“READ” using non-emitting states 
R 

EH 

IY 

D 

R D 

IY 

EH 
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“READ” using non-emitting states 
R 

EH 

IY 

D 

R D 

IY 

EH 

• Transition probabilities from non-emitting state into EH and IY are 
identical to transition probabilities from the original generating states 
of EH and IY 
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“READ” using non-emitting states 
R 

EH 

IY 

D 

R D 

IY 

EH 

• Transition probabilities into non-emitting state from EH and IY are 
identical to transition probabilities into the original absorbing states 
of EH and IY 
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“READ” using non-emitting states 

• A break from theory:   

– The sum of all outgoing transition probabilities from any state should 

theoretically sum to 1.0 

– Here, however, the probabilities of the two blue arcs sum to 1.0, as do the 

probabilities of the two red arcs 

– The total probability of all outgoing arcs from the first non-emitting state is 

greater than 1.0 
 

• The probabilities may be normalized to sum to 1.0 for theoretical consistency, 

but practically, this is often not effective 

R D 

IY 

EH 
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Building with direct connections 

• Phonemes may be linked via direct connection 

– No non-emitting states 
 

• The HMM structure now becomes more complex 

– All transitions into multiple phonemes (R->[IY, EH]) at 
branching points must be considered 

– All transitions from multiple phonemes ([IY,EH]->D) 
must be considered 
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Fully connected HMM for READ 

• Save your time .. 

R D 

IY 

EH 
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It can get more complex 

• ALLENBY :    AE L (EH | AX) (N | M) B IY 

 

• This is best done with non-emitting states 

• Directly linking the phonemes without non-
emitting states can result in the addition of a 
very large number of transitions 
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Mutiple phones at the begin/end 

• Multiple alternative phonemes may be likely at the 
beginnings and ends of words 

– (AX | AE) N 
 

• Multiple phonemes at the beginning:  The number of states 
in the HMM with non-zero initial probabilities will be the 
sum of the number of such states in each of the entry 
phonemes 

– I.e. no. of non-zero initial prob. states in AX + the no. of non-
zero initial prob. states in AE 

– These can be represented as transitions out of a generating 
state for the word 
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Mutiple phones at the begin/end 

• Similarly, the probability of terminating in the various states of pronunciations with 

multiple alternate terminal phonemes 

(e.g. OF: AX (F | V)) can be represented through a common absorbing state 

AE 

N 

AX 

AX 

F 

V 
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Associating Probabilities With Prons 

• Some pronunciations are more probable than others. We may want to 
incorporate these a priori probabilities into the search 

– E.g. “AE N” is used much less frequently than “AX N” 

– Prob(AE N) = 0.2;   Prob(AX N) = 0.8 

 

• If multiple pronunciations are represented by multiple edges, then  
we simply associate an additional probability with each edge 

 

 

 

 WE 

I 

READ 

WRITE 

BOOKS 

PAPERS 

WE 

I 

READ(2) 

WRITE 

BOOKS 

PAPERS 

READ(1) 
a 

0.8a 

0.2a 
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Associating Probabilities With Prons 

• For phoneme networks, probabilities will be part of 
the graph: 

– READ:   R  (IY <0.8> | EH <0.2>) D 

• The probabilities can be factored into the 
transitions between states of phonemes 

R D 

IY 

EH 

Multiply by 0.8 

Multiply by 0.2 
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Associating Probabilities With Prons 

• For phoneme networks, probabilities will be part of 
the graph: 

– READ:   R  (IY <0.8> | EH <0.2>) D 

• The probabilities can be factored into the 
transitions between states of phonemes 

R D 

IY 
Multiply by 0.8 

Multiply by 0.2 
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The Effect of  Context 
• Phonemes are not entirely consistent 

– Different instances of a phoneme will differ according to its neighbours 

– E.g: Spectrograms of IY in different contexts 

Beam Geek 

Read Meek 
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The Effect of  Context 
• Phonemes are not entirely consistent 

– Different instances of a phoneme will differ according to its neighbours 

– E.g: Spectrograms of IY in different contexts 

Beam Geek 

Read Meek 
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The Effect of  Context 
• Every phoneme has a locus 

– The spectral shape that would be observed if the phoneme were uttered 

in isolation, for a long time 

 

 

 

 

– In continuous speech, the spectrum attempts to arrive at locus of the 

current sound 

AA IY UW M 

PARTYING 

AA R T IY IH NG P 
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The Effect of  Context 
• Every phoneme has a locus 

– For many phoneme such as “B”, the locus is simply 
a virtual target that is never reached 

AABAA EEBEE 

o Nevertheless, during continuous speech, the spectrum for the signal tends 
towards this virtual locus 
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The Effect of  Context 
• Every phoneme has a locus 

– For many phoneme such as “B”, the locus is simply 
a virtual target that is never reached 

AABAA EEBEE 

o Nevertheless, during continuous speech, the spectrum for the signal tends 
towards this virtual locus 
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• The acoustic flow for phonemes:  every phoneme is associated with a 
particular articulator configuration 

 

• The spectral pattern produced when the articulators are exactly in that 
configuration is the locus for that phoneme 

 

• As we produce sequences of sounds, the spectral patterns shift from the 
locus of one phoneme to the next 

o The spectral characteristics of the next phoneme affect the current phoneme 

 

• The inertia of the articulators affects the manner in which sounds are 
produced 

o The vocal tract and articulators are still completing the previous sound, even as we 
attempt to generate the next one 

 

• As a result of articulator inertia, the spectra of phonemes vary with the 
adjacent phonemes 

Variability among Sub-word Units 
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Phoneme 1 Phoneme 2 Phoneme 3 

Phoneme 3 Phoneme 2 Phoneme 1 

Locus of phoneme 1 Locus of phoneme 2 Locus of phoneme 3 

Locus of phoneme 3 
Locus of phoneme 2 

Locus of phoneme 1 

Spectral trajectory of  a phoneme is dependent on 

context 
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Phoneme 1 Phoneme 2 Phoneme 3 

Phoneme 3 Phoneme 2 Phoneme 1 

Locus of phoneme 1 Locus of phoneme 2 Locus of phoneme 3 

Locus of phoneme 3 

Locus of phoneme 2 

Locus of phoneme 1 

Spectral trajectory of  a phoneme is dependent on 

context 

These regions are totally 

dissimilar These regions are 

totally dissimilar 
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• Phonemes can vary greatly from instance to instance 
 

• Due to co-articulation effects, some regions of phonemes are very 

similar to regions of other phonemes 

– E.g. the right boundary region of a phoneme is similar to the left boundary 

region of the next phoneme 
 

• The boundary regions of phonemes are highly variable and confusable 

– They do not provide significant evidence towards the identity of the 

phoneme 

– Only the central regions, i.e. the loci of the phonemes, are consistent 
 

• This makes phonemes confusable among themselves 

– In turn making these sub-word units poor building blocks for larger 

structures such as words and sentences 
 

• Ideally,  all regions of the sub-word units would be consistent 

Subword units with high variability are poor building 

blocks for words 
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Phoneme 1 Phoneme 2 Phoneme 3 

Phoneme 4 Phoneme 2 Phoneme 3 

The shaded regions are similar, although the phonemes to the left are 
 different in the two cases 

Diphones – a different kind of  unit 



61 

• A diphone begins at the center of one phoneme and ends at the center of 
the next phoneme 

 

• Diphones are much less affected by contextual, or co-articulation effects 
than phonemes themselves 

– All regions of the diphone are consistent, i.e. they all provide evidence for the 
identity of the diphone 

– Boundary regions represent loci of phonemes and are consistent 

– Central regions represent transitions between consistent loci, and are consistent 
 

• Consequently, diphones are much better building blocks for word HMMs 
than phonemes 
 

• For a language with N phonemes, there are N2 diphones 

– These will require correspondingly larger amounts of training data 

– However, the actual number of sub-word units remains limited and enumerable 

• As opposed to words that are unlimited in number 

Diphones – a different kind of  unit 
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The Diphone 

• Phonetic representation of ROCK: 

– ROCK:    R  AO K 
 

• Diphone representation: 

– ROCK:   (??-R),  (R-AO),  (AO-K), (K-??) 

– Each unit starts from the middle of one phoneme and ends at the middle of the next 
one 

 

• Word boundaries are a problem 

– The diphone to be used in the first position (??-R) depends on the last phoneme of the 
previous word!  

• ?? is the last phoneme of the previous word 

– Similarly, the diphone at the end of the word (K-??) depends on the next word 
 

• We build a separate diphone-based word model for every combination of 
preceding and following phoneme observed in the grammar 

 

• The boundary units are SHARED by adjacent words 



63 

• Dictionary entry for ROCK:  /R/  /AO/  /K/ 

• Word boundary units are not unique 
 

• The specific diphone HMMs to be used at the ends of the word depend on 
the previous and succeeding word 

– E.g.  The first diphone HMM for ROCK in the word series JAILHOUSE ROCK  is /S-R/, 
whereas for PLYMOUTH ROCK, it is /TH-R/ 

 

• As a result, there are as many HMMs for “ROCK” as there are possible left-
neighbor, right-neighbor phoneme combinations 

HMM for /*-R/ HMM for /R-AO/ HMM for /K-*/ 

Components of HMM for ROCK 

HMM for /AO-K/ 

Building word HMMs with diphones 
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• We end up with as many word models for 
ROCK as the number of possible 
combinations of words to the right and left 

HMM for /*-R/ HMM for /AO-K/ 

Composed HMM for ROCK 

HMM for /K-*/ 

Building word HMMs with diphones 

HMM for /R-AO/ 
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Diphone Networks 

• Consider this example grammar 

HER ROCK NECKLACE 

MY ROCK COLLECTION 

A ROCK STAR 
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Diphone Networks 

• Consider this example grammar 
• For illustration, we will concentrate on this 

region 

HER ROCK NECKLACE 

MY ROCK COLLECTION 

A ROCK STAR 
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Building word HMMs with diphones 
/AO-K/ 

/AO-K/ 

/AO-K/ 

/R-AO/ 

/R-AO/ 

/R-AO/ 

HER ROCK NECKLACE 

MY ROCK COLLECTION 

A ROCK STAR 

/R-R/ 

/AY-R/ 

/AX-R/ 

/K-N/ 

/K-K/ 

/K-S/ 

ROCK 

ROCK 

ROCK HER 

MY 

A 

NECKLACE 

COLLECTION 

STAR 
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Building word HMMs with diphones 
/AO-K/ 

/AO-K/ 

/AO-K/ 

/R-AO/ 

/R-AO/ 

/R-AO/ 

/R-R/ 

/AY-R/ 

/AX-R/ 

/K-N/ 

/K-K/ 

/K-S/ 

ROCK 

ROCK 

ROCK HER 

MY 

A 

NECKLACE 

COLLECTION 

STAR 

• Each instance of Rock is a different model 

o The 3 instances are not copies of one another 

• The boundary units (gray) are shared with adjacent words 
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• We end up with as many word models for 
ROCK as the number of possible words to 
the right and left 

Composed HMM for ROCK 

Building word HMMs with diphones 

HMM for /*-R/ HMM for /AO-K/ 

HMM for /K-*/ HMM for /R-AO/ 
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• Under some conditions, portions of 
multiple versions of the model for a word 
can be collapsed 

– Depending on the grammar 

Composed HMM for ROCK 

Building word HMMs with diphones 
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Diphone Networks 

• Consider this example grammar 

HER NECKLACE 

MY ROCK COLLECTION 

A STAR 
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Building word HMMs with diphones 

/AO-K/ /R-AO/ 

ROCK 

MY 

COLLECTION 

• As before, the transition diphones belong to both words in each case 

• Such collapsing of the central word is possible only when they all represent 
the same entry in the grammar 

/AY-R/ /K-K/ 

Connections between HMMs to be built 
as explained earlier 
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Rock 

Dog 

Star 

SIL-R R-AO AO-K 

SIL-D D-AO AO-G 

S-T T-AA AA-R R-SIL 

DOG 

ROCK 

STAR 

• One way of forming a Diphone-based HMM for the simple grammar that 
recognizes “DOG STAR” or “ROCK STAR” 
 

• The boundary units (G-S and K-S) are actually shared by two words 

G-S 

K-S 

A simple example of  a complete grammar 
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START END 

ODD 

EVEN 

Another Example 

A simple grammar that allows only the words EVEN and 
ODD. The probability of ODD following ODD is different from 
that of ODD following EVEN  etc. 
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AO-D D-SIL 

IY-V V-EH EH-N  N-SIL 

END START 
D-IY 

 N-AO 

D-AO 

 N-IY 

SIL-AO 

SIL-IY 

The Full Diphone-based HMM 

D 

V EH N 

END START 

AO 

IY 

The Diphone HMM (left) 
is much more complex  
than the corresponding 
phoneme-based HMM 
(below) 
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Building a Diphone-based recognizer 

• Train models for all Diphones in the language 

– If there are N phonemes in the language, there will be N2 

diphones 

– For 40 phonemes, there are thus 1600 diphones; still a 

manageable number 

 

• Build the HMM for the Grammar using Diphone 

models 

– There will no longer be distinctly identifiable word HMM 

because boundary units are shared among adjacent words 
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• Cross-word diphones have somewhat different structure than within-word diphones, 
even when they represent the same phoneme combinations 

– E.g. the within-word diphone AA-F in the word “AFRICA”  
is different from the word-boundary diphone AA-F in BURKINA FASO” 

– Stresses applied to different portions of the sounds are different 

– This is true even for cross-syllabic diphones 
 

• It is advantageous to treat cross-word diphones as being distinct from within-word 
diphones 

– This results in a doubling of the total number of diphones in the language to 2N2 

• Where N is the total number of phonemes in the language 

– We train cross-word diphones only from cross-word data and within-word diphones from 
only within-word data 

 

• The separation of within-word and word-boundary diphones does not result in any 
additional complication of the structure of sentence HMMs during recognition 

Word-boundary Diphones 
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• Loci may never occur in fluent speech 
– Resulting in variation even in Diphones 

• The actual spectral trajectories are affected by adjacent phonemes 
– Diphones do not capture all effects 

Phoneme 1 Phoneme 2 Phoneme 1 

Phoneme 3 Phoneme 2 Phoneme 1 

These diphones 

have different 

spectral structure 

Improving upon Diphones 
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Phoneme 1 Phoneme 2 Phoneme 1 

Phoneme 3 Phoneme 2 Phoneme 1 

Triphones: PHONEMES IN CONTEXT 

These two are 

different triphone 

units 

• Triphones represent phoneme units that are specific to a context 
– E.g. “The kind of phoneme 2 that follows phoneme 3 and precedes phoneme 3” 

• The triphone is not a triplet of phonemes – it still represents a single phoneme 
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Triphones 

• Triphones are actually specialized phonemes 

– The triphones AX (B, T),  AX( P, D), AX(M,G) all represent variations of AX 

 

• To build the HMM for a word, we simply concatenate the HMMs for 
individual triphones in it 

– E.g     R AO K :    R(??, AO) AO (R,K) K(AO,??) 

– We link the HMMs for the triphones for R(??,AO), AO(R,K) and K(AO,??) 
 

• Unlike diphones, no units are shared across words 
 

• Like diphones, however, the boundary units R(??,AO), K(AO,??) depend on 
the boundary phonemes of adjacent words 

– In fact it becomes more complex than for diphones 
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D(AO,Sil) 

END START 
D(AO,IY) 

D(AO,AO) 

AO(Sil,D) 

The Triphone-based HMM 

AO(N,D) 

AO(D,D) 

IY(Sil,V) 

IY(N,V) 

IY(D,V) 

N(V,IY) 

N(EH,AO) 

N(EH,Sil) 



82 

• Triphones at word boundaries are dependent on neighbouring words. 

• This results in significant complication of the HMM for the lanaguage (through 
which we find the best path, for recognition) 

– Resulting in larger HMMs and slower search 

Lexicon 

Five 
Four 
Nine 
<sil> 
++Breath++ 

= F 

= AY 

= V 

= OW 

= R 

= N 

= SIL 

= +breath+ 

Dictionary 
Five:              F AY V 
Four:             F OW R 
Nine:             N AY N 
<sil>:             SIL 
++breath++:  +breath+ 

Listed here are five “words” and their pronunciations in terms 
of “phones”. Let us assume that these are the only words in 
the current speech to be recognized. The recognition 
vocabulary thus consists of five words. The system uses a 
dictionary as a reference for these mappings. 

Cross-word triphones complicate HMMs 
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A Slightly More Complex Grammar for Illustration 

• We will compose an HMM for the simple grammar above 
– A person may say any combination of the words five, nine and 

four with silences and breath inbetween 

Five 

Four 

Nine 

pause 

++breath++ 
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start end 

Word boundary units are not context specific. 

All words can be connected to (and from) null nodes 

Using (CI) Phonemes 

Lexicon 

Five 
Four 
Nine 
<sil> 
++Breath++ 

= F 

= AY 

= V 

= OW 

= R 

= N 

= SIL 

= +breath+ 

Each coloured square represents 
an entire HMM 
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Five 

 

Four 

 

Nine 

 

<sil>  

                 
++Breath++ 

Using the dictionary as reference, the system first maps each word into triphone-
based pronunciations. Each triphone further has a characteristic label or type, 
according to where it occurs in the word. Context is not initially known for cross-
word triphones. 

N(*, AY)cross-word 

AY(F, V)word-internal 

R(OW, *)cross-word 

V(AY, *)cross-word 

OW(F, R)word-internal 

N(AY, *)cross-word 

F(*, OW)cross-word 

AY(N, N)word-internal 

F(*, AY)cross-word 

SIL 

+breath+ 
Each triphone is modelled by an HMM 

Silence is modelled by an HMM 

breath is modelled by an HMM 

Using Triphones 



86 

A triphone is a single context-specific phoneme. It is not a sequence of 3 phones. 
Expand the word Five 
• All last phones (except +breath+) become left contexts for first phone of Five. 
• All first phones (except +breath+) become right contexts for last phone of Five 
• Silence can form contexts, but itself does not have any context dependency. 
• Filler phones (e.g. +breath+) are treated as silence when building contexts. Like  silence, they 
themselves do not have any context dependency. 

HMM for “Five”. 
This is composed of 
8 HMMs. 

Each triple-box represents a triphone. Each 
triphone model is actually a left-to-right HMM. 

Using Triphones 
Lexicon 

Five 
Four 
Nine 
<sil> 
++Breath++ 

= F 

= AY 

= V 

= OW 

= R 

= N 

= SIL 

= +breath+ 
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Linking rule: 
Link from rightmost color x 
with right context color y to 
leftmost color y with right 
context color x 

W1 

W2 

W3 

W4 

P(W1) 

P(W2) 

P(W3) 

P(W4) 

The triphone based Grammar HMM 
Lexicon 

Five 
Four 
Nine 
<sil> 
++Breath++ 

five 

four 

nine 

sil 

breath 
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All linking rules: 
• Begin goes to all silence  
left contexts 
• All silence right contexts go to end 
• Link from rightmost color x with 
right context color y to leftmost color 
y with right context color x 

start 
end 

This completes the HMM 

for UNIGRAM  LANGUAGE  

MODEL based decoding. 

The triphone based Grammar HMM 

Lexicon 

Five 
Four 
Nine 
<sil> 
++Breath++ 
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• Even a simple looping grammar becomes very complicated because of cross-
word triphones 

 

• The HMM becomes even more complex when some of the words have only 
one phoneme 

– There will be as many instances of the HMM for the word as there are word 
contexts 

– No portion of these HMMs will be shared! 
 

• We can simplify this structure by using CI phonemes at either word entry or 
word exit or both 

– This is acceptable since triphones are specialized cases of phonemes 
 

• Typically this reduces the number of states, but not transitions 

• Approximations will result in reduction of accuracy 

– Approximating word-exit triphones with CI phonemes is less harmful than 
approximating word-entry triphones 

The triphone based Grammar HMM 
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All linking rules: 
• Begin goes to all silence  
left contexts 
• All silence right contexts go to end 
• Link from rightmost color x with 
right context color y to leftmost color 
y with right context color x 

start 
end 

This completes the HMM 

for UNIGRAM  LANGUAGE  

MODEL based decoding. 

CI Phones at the exit 

Lexicon 

Five 
Four 
Nine 
<sil> 
++Breath++ 
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Types of  triphones 

• A triphone in the middle of a word sounds different from the same triphone at 
word boundaries 

– e.g the word-internal triphone AX(G,T) from GUT: G AX T 

– Vs. cross-word triphone AX(G,T) in BIG ATTEMPT 
 

• The same triphone in a single-word (e.g when the central phoneme is a complete 
word) sounds different 

– E.g.  AX(G,T) in   WAG A TAIL 

– The word A: AX is a single-phone word and the triphone is a single-word triphone 
 

• We distinguish four types of triphones: 

– Word-internal 

– Cross-word at the beginning of a word 

– Cross-word at the end of a word 

– Single-word triphones 
 

• Separate models are learned for the four cases and appropriately used 
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Context Issues 

• Phonemes are affected by adjacent phonemes. 

• If there is no adjacent phoneme, i.e. if a phoneme follows or 
precedes a silence or a pause, that will also have a unique 
structure 

• We will treat “silence” as a context also 

 

• “Filler” sounds like background noises etc. are typically 
treated as equivalent to silence for context 

 

• “Voiced” filler sounds, like “UM”, “UH” etc. do affect the 
structure of adjacent phonemes and must be treated as valid 
contexts 
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• 1.53 million words of training data (~70 hours) 

• All 39 phonemes are seen (100%) 
 

• 1387 of 1521 possible diphones are seen (91%) 

– Not considering cross-word diphones as distinct units 
 

• 24979 of 59319 possible triphones are seen (42%) 

– not maintaining the distinction between different kinds of triphones 

Training Data Considerations for Nphone Units 
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• All context-independent phonemes occur in sufficient 
numbers to estimate HMM parameters well 

– Some phonemes such as “ZH” may be rare in some corpora. In 
such cases, they can be merged with other similar phonemes, e.g. 
ZH can be merged with SH, to avoid a data insufficiency problem 

Histogram of the number of occurrances of the 39 phonemes in  
1.5 million words of Broadcast News 

Counts of CI Phones 
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• Counts (x axis) > 10000 not shown, Count of counts (Y axis) clipped from above at 10 

• The figure is much flatter than the typical trend given by Zipf’s law 

• The mean number of occurrances of diphones is 4900 

• Most diphones can be well trained 

– Diphones with low (or 0) count, e.g. count < 100, account for less then 0.1% of the total 

probability mass 

• Again, contrary to Zipf’s law 

– Diphones with low count, or unseen diphones, can be clustered with other similar diphones 

with minimal loss of recognition performance 

“Count of counts” histogram for the 1387 diphones  
in 1.5 million words of Broadcast News 

Counts of Diphones 
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• Counts (x axis) > 250 not shown 

• Follows the trends of Zipf’s law very closely 

– Because of the large number of triphones 

• The mean number of occurrances of observed triphones is 300 

• The majority of the triphones are not seen, or are rarely seen 

– 58% of all triphones are never seen 

– 86% of all triphones are seen less than 10 times 

– The majority of the triphones in the langauge will be poorly trained 

• Back off to CI phones or use parameter sharing techniques for these 

“Count of counts” histogram for the 24979 triphones  
in 1.5 million words of Broadcast News 

Counts of Triphones 
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• Spectral trajectories are also affected by farther contexts 

– E.g. by phonemes that are two phonemes distant from the current one 
 

• The effect of longer contexts is much smaller than that of immediate context, 
in most speech 

– The use of longer context models only results in relatively minor improvements in 
recognition accuracy 

 

• The are far too many possibilities for longer context units 

– E.g,  there are 405 possible quinphone units (that consider  a 2-phoneme context 
on either side), even if we ignore cross-word effects 

 

• Cross-word effects get far more complicated with longer-context units 

– Cross-word contexts may now span multiple words. The HMM for any word thus 
becomes dependent on the the previous two (or more) words, for instance. 

– Even a simple unigram graph may end up having the same complexity as a trigram 
LM graph, as a result 

Higher order Nphones 
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• Word models 

– Very effective, if they can be well trained 

– Difficult to train well, when vocabularies get large 

– Cannot recognize words that are not see in training data 
 

• Context-independent phoneme models 

– Simple to train; data insufficiency rarely a problem 

– All phonemes are usually seen in the training data 

• If some phonemes are not seen, they can be mapped onto other, relatively 
common phonemes 

 

• Diphones 

– Better characterization of sub-word acoustic phenomena than simple 
context-independent phonemes 

– Data insufficiency a relatively minor problem. Some diphones are usually 
not seen in training data. 

• Their HMMs must be inferred from the HMMs for seen diphones 

Training Tradeoffs 
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• Triphones 

– Characterizations of phonemes that account for contexts on both sides 

– Result in better recognition than diphones 

– Data insufficiency is a problem: the majority of triphones are not seen in 
training data.  

• Parameter sharing techniques must be used to train uncommon triphones derive 
HMMs for unseen triphones 

– Advantage: can back-off to CI phonemes when HMMs are not available for the 
triphones themselves 

 

• Higher order Nphone models 

– Better characterizations than triphones, however the benefit to be obtained 
from going to Nphones of higher contexts is small 

– Data insufficiency a huge problem – most Nphones are not seen in the training 
data 

• Complex  techniques required for inferring the models for unseen Nphones 

• Alternatively, one can backoff to triphones or CI-phonemes 

Training Tradeoffs 
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• Word models 

– Very effective for recognition, when vocabularies are small 

• Poor training affects large vocabulary systems 

– Cannot recognize words that are not seen in the training data 
 

• Phoneme and Nphone models: words that are never seen in the training data can still be 
recognized 

– Their HMMs can be composed from the HMMs for the phonetic units 
 

• Context-independent phoneme models 

– Results in very compact HMMs and fast decoding speeds 

– Relatively poor performance 
 

• Diphones 

– There are many more Diphones than CI phonemes 

• The total number of HMM parameters to be stored is larger as a result 

– Cross-word effects complicate sentence HMM structure 

– The resulting sentence HMMs are larger than those obtained with CI phonemes 

– Recognition with diphones is slower but more accurate than recognition with CI phonemes 

Recognition Tradeoffs 
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• Triphones 

– Much larger in number than diphones 

• Requires the storage of a larger number of HMM components 

– Cross-word effects complicate sentence HMM structure 

– Triphone-based systems are larger, slower, and more accurate than those based on diphones or CI 
phonemes  

 

• Higher order Nphones 

– Even larger in number than triphones 

– Cross-word effects are more complicated than for diphones or triphones 

– Sentence HMM graphs become prohibitive in size 
 

• What to use 

– Word models are best when the vocabulary is small (e.g. digits). 

– CI phoneme based models are rarely used 

– Where accuracy is of prime importance, triphone models are usually used 

– If reduced memory footprint and speed are important, e.g. in embedded recognizers, diphone 
models are often used 

– Higher-order Nphone models are rarely used in the sentence HMM graphs used for recognition. 
However, they are frequently used for rescoring 

• Rescoring will be discussed in a future lecture. 

Recognition Tradeoffs 
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Summary 
• Have discussed subword units and the need for 

them 

• Building word HMMs using subword units 

• Context dependent subword units 
– Diphones 

– Triphones 

– Issues 

• Tradeoffs 
 

• Next: More details 


